
Inside This Issue

continued on page 3 continued on page 6

Volume II, Number 5 October 1996

NewtonScript Techniques Newton Communications

NewtonScript Techniques
Using Unit References to Speed
Application Development 1

Newton Communications
Newton 2.0 Messaging Enabler - Get
Your Messages Movin’ 1

Advanced Techniques
Mock Entries for Debugging 9

Understanding NewtonScript
Debugging Tutorial: Finding and
Fixing Bugs in an Application 11

Product Development
Avoiding Common UI Mistakes 14

Newton Directions
Get Connected 15

Communications Technology
The High Level Frame Desktop
Integration Library (HLFDIL) 16

Newton 2.0
Messaging
Enabler - Get
Your Messages
Movin’
by Jason Rukman, Apple Computer, Inc.

Connectivity! Do you carry a cell phone, pager
or possibly some other device to stay in touch?
If you do, then you would probably like to
transfer some of this information onto your
Newton PDA. When I have my Newton with me
I’d like the information on my pager to go
directly to my Newton.

The Messaging Enabler is a 2.0 transport that
solves this problem by providing a framework
specifically designed for 1-way and 2-way wireless
messaging. With the Messaging Enabler,
developers are able to get a messaging device
working quickly, easily and consistently with the
Newton. The messaging device will be
integrated with the rest of the Newton system
and Newton applications that support routing.

For the Messaging Enabler to be useful, it
requires a plug-in driver, called a message
module, for a particular hardware device. A
message module must implement a set of APIs
for communicating with the particular hardware
device and the Messaging Enabler looks after the
rest. (This API is distributed with the Messaging
Enabler development kit.)

Your specialty may be developing
communications software. The idea behind the
Messaging Enabler is to remove the user

Using Unit
References to
Speed Application
Development
by Bob Ebert, Newton DTS, Apple Computer Inc.

THE PROBLEM

NTK is getting faster with each release. With
NTK 1.6.x on a PowerMac, the compilation phase
of even large projects is amazingly short. Unless
you have to do it over and over and over again,
all day long. What’s worse, no matter how much
faster NTK gets, it still takes time to download
the package, and a PowerMac won’t help with
that. I find it annoying to have to wait a minute
or two or twenty to see how a tiny change plays
out in a large package.

Wouldn’t it be great to be able to split an
application into smaller projects? You could
build each project separately, saving time both
during compilation and during downloading,
since only the smaller part you just edited would
need to be built and downloaded. Separating an
application into pieces could also allow a team of
programmers to work on a project. Each
engineer would produce one part, hack at it until
it’s working, then share it with the team.

HAVEN’T WE SOLVED THAT PROBLEM?
Newton Technology Journal volume 1,

number 4 , August 1995, contained an article
called “Small Parts: A Faster Way to Develop
Large Applications” which addressed this
problem. It showed how to split your application
into separate modules that could be compiled

October 1996 Newton Technology Journal

2

The Excitement is Building

I just returned from Macworld Expo/
Boston, where I met a good number of
enthusiastic Newton developers at Developer
Central™. Granted, I took some heat for
demoing Newton Toolkit for Windows on a
Pentium (at a Macintosh Expo no less), but as
the implications of making Newton
development available to the Windows
community began to dawn on folks, their
eyes lit up. “This is a very good thing” they
said. I have to agree – the possibilities are
endless, and the excitement is growing.

Speaking of excitement, I want to invite
each of you to the upcoming Fall Newton
Developers Conference on November 4, 5,
and 6th in San Francisco, California. Bring a
hat to hold onto, as there will be plenty of
extremely interesting news, technical
presentations, hardware demos, and labs. Be
sure to bring your existing code, for reasons
you’ll hear about later. Be prepared to be
blown away. (I’m really not very good at
keeping secrets, can you tell?) For conference
registration information, please visit the
Newton Development Home page at
http://devworld.apple.com/dev/newtondev.shtml

Speaking of secrets, you’ve probably heard
by now that Apple has wisely formed the
Information Appliances Division, of which
Newton is a part. Jim Groff was named Senior
Vice President of the division by Dr. Gil Amelio
in early June. Mr. Groff has a strong and vocal
commitment to Newton and a rich history with
Apple which spans a wide range of product
and market areas, from Internet servers to
Education. Sandy Benett was formally named
as Vice President of the Newton Systems
Group (he was acting in the position for quite
some time), and another new face is that of
Barbara Groth, who now heads up the Newton
Solutions Marketing group (formerly known as
Developer Relations). You’ll be hearing more

detail on the structure of this key group in
months ahead.

In this issue of the Newton Technology
Journal, we bring you coverage of Newton
Communications in the form of Messaging
Enabler and FDILs articles. We heighten your
programming finesse with articles on User
Interface tips and how to shorten your
development cycle using unit references. In
the debugging arena, you’ll find advanced
techniques using mock entries, and an
excerpted article on debugging techniques
from the newly updated book “Programming
for the Newton, 2nd Edition” by Julie
McKeehan and Neil Rhodes. And we bring
you important information on the long-
awaited Newton Connections Utility for
Newton 2.0.

Keep your eyes open for December’s
issue, which no Newton developer will want
to miss. To all of you who spoke with me at
Macworld Expo, thank you for your product
demos, and to all Newton developers, thank
you for your enthusiasm, your belief in your
products, and your ongoing commitment to
Newton. I am confident that all of your hard
work is about to pay off. The future is very
bright on the Newton front.

See you at the developer conference!

Jen Dunvan
dunvan@newton.apple.com

……………………………………………………

Published by Apple Computer, Inc.

Jennifer Dunvan • Managing Editor

Gerry Kane • Coordinating Editor,Technical Content

Gabriel Acosta-Lopez • Coordinating Editor, DTS and
Training Content

Technical Peer Review Board
J. Christopher Bell, Bob Ebert, David Fedor,
Ryan Robertson, Jim Schram, Maurice Sharp,
Bruce Thompson

Contributors
Bob Ebert, Cami Hsu, Julie McKeehan, Neil Rhodes,
Jason Rukman, Bill Worzel

……………………………………………………

Produced by Xplain Corporation

Neil Ticktin • Publisher

Will Iverson • Technical Production Review

InfoGraphix • Design/Production

……………………………………………………

© 1996 Apple Computer, Inc., 1 Infinite Loop,Cupertino,CA
95014, 408-996-1010. All rights reserved.

Apple, the Apple logo, APDA, AppleDesign, AppleLink,
AppleShare, Apple SuperDrive, AppleTalk, HyperCard,
LaserWriter, Light Bulb Logo, Mac, MacApp, Macintosh, Macintosh
Quadra, MPW, Newton, Newton Toolkit, NewtonScript,
Performa, QuickTime, StyleWriter and WorldScript are
trademarks of Apple Computer, Inc., registered in the U.S. and
other countries. AOCE, AppleScript, AppleSearch, ColorSync,
develop, eWorld, Finder, OpenDoc, Power Macintosh,
QuickDraw, SNA•ps, StarCore, and Sound Manager are
trademarks, and ACOT is a service mark of Apple Computer, Inc.
Motorola and Marco are registered trademarks of Motorola, Inc.
NuBus is a trademark of Texas Instruments. PowerPC is a
trademark of International Business Machines Corporation, used
under license therefrom. Windows is a trademark of Microsoft
Corporation and SoftWindows is a trademark used under license
by Insignia from Microsoft Corporation. UNIX is a registered
trademark of UNIX System Laboratories, Inc. Developer Central
is a trademark of Xplain Corporation. CompuServe, Pocket
Quicken by Intuit, CIS Retriever by BlackLabs, PowerForms by
Sestra, Inc.,ACT! by Symantec,Berlitz, and all other trademarks are
the property of their respective owners.

Mention of products in this publication is for informational
purposes only and constitutes neither an endorsement nor a
recommendation.All product specifications and descriptions were
supplied by the respective vendor or supplier. Apple assumes no
responsibility with regard to the selection, performance, or use of
the products listed in this publication. All understandings,
agreements, or warranties take place directly between the vendors
and prospective users. Limitation of liability: Apple makes no
warranties with respect to the contents of products listed in this
publication or of the completeness or accuracy of this publication.
Apple specifically disclaims all warranties, express or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

Volume II, Number 5 October 1996 Letter From the Editor
by Jennifer Dunvan

Editor’s Note

Newton Technology Journal October 1996

3

and downloaded separately, but which would still work together. The small
effort to split your application up was typically recovered in the first day of
building and downloading smaller pieces. The DTS 1.x Q&As also go into
detail on how to split up an application.

One of the drawbacks to using those approaches is that you have to edit
your code to make the connections work properly, then edit it again when
producing a final version. You also need to create global variables, and write
code to hook these globals into your app. Even after mastering all that,
getting data from another package into a template’s _proto slot is very
tricky.

This article builds on those techniques. Using the unit reference feature
added in the 2.0 release of the Newton OS, you can split a large application
into pieces which can be built and downloaded separately, or combined into
a single part. What’s more, the source files can now work either way without
modification.

BACKGROUND: UNIT REFERENCES

New in the 2.0 release of the Newton OS is the ability for one package to
directly reference data in another. Actually, you’ve been able to do this all
along using run-time references found in global variables, slots in the root
view, or other places. What’s new is that you can now have NTK compile in
references to data in other packages—so you won’t need to use any
NewtonScript heap space to make the connections.

You may have heard of so-called magic pointers, which are references in
your packages to objects in the ROM. What’s “magic” about these pointers is
that the objects themselves are in different locations in the various ROM
releases. Yet your package still manages to find the right value, no matter
which ROM it loads in. Magic!

It’s not really magic, of course. Magic pointers work like handles, there’s
a double-dereference involved. Every ROM puts a lookup table for magic
objects in a special place, and the OS looks up the real reference via the table
when the magic pointer is used.

UNIT REFERENCES WORK LIKE MAGIC

Unit references give the parts in your packages the ability to contain
objects that can be referenced like magic pointers. Package A can create an
array, frame, or binary object and export it. Package B can have a reference
to that object, and the OS will make sure that when B looks for the object, it
finds it, so long as A is installed. No matter where in memory A happens to
be!

Unit references are more magical than magic pointers. There’s no way of
knowing in advance where in memory an exporting package will be located,
so there’s no easy way to locate the table of references for a given part. But it
happens, and your importing package finds the correct object.

Now let’s clean up the terminology. A unit is a group of zero or more
objects, identified by a unique symbol as well as a major and minor version
number. A part is what NTK typically produces, for example an application
or auto part, and a part can export and import zero or more units. Parts go in
packages, with zero or more parts per package. (But a package with zero
parts isn’t good for much besides debugging the OS.) Remember that it’s at
the part level that units are imported or exported, not the package level.

Unit references are great for all kinds of applications. Any time a bunch of
applications need to share some read-only data, code, or objects, you should
consider using unit references. One alternative is putting copies of the
shared data in each package, which wastes memory. Another alternative is
using a soup, but that’s typically complicated because you need to write code
to make, find, and use the data at run-time. Large data objects, shared
prototypes, widely used functions, or even modules from other programmers
are all things that might be shared via unit references. This article focuses on
using them during development to speed the build/download/test cycle.

For more details on the API for unit references, as well as documentation,
supporting functions, and a cool example, check out the “Moo Unit” sample
code by Mike Engber. “Moo Unit” is distributed with the DTS sample code.

BACKGROUND: AN APPLICATION

Each layout or user proto in NTK normally produces only a single object.
That object is made available to the rest of the project through the build-time
constant function GetLayout(“filename”).

It is possible to create layouts in NTK that produce more than one value.
BeforeScripts or afterScripts in the templates may create other constants,
build-time global variables, or cause other side effects. While this can
sometimes be handy, I think it’s bad form for one layout to rely on “side
effects” from compilation of some other layout. Layouts and protos are
primarily declarative—they create an object—and relying on side effects of
that object’s construction can be confusing. It’s easy to avoid programming
this way by creating text files of common objects used by more than one
layout.

Text files in NTK can be thought of as “nothing but side effects.” They
create global variables like the InstallScript, or constants like the
localization frame that are used in other parts of your application. Even with
text files it’s usually a good idea to have each file produce a small, well-
defined set of values. This set can be thought of as the “interface” between
that file and the rest of the application.

User protos in NTK actually do a little bit more than simply create an
object at build time. They also clue NTK into the fact that some new
prototype object exists, which allows NTK to put an item in the “User Proto”
popup in the palette. This currently doesn’t buy you anything other than the
ability to drag out a user proto in the layout view. We’ll come back to this
later.

Linked Layouts in NTK can be thought of as a special case of user protos.
Unlike user protos, linked layouts constrain things so that a layout can only
be placed in a project once. We’ll come back to this, too.

BREAKING A PROJECT INTO SMALLER PARTS

I’ll assert that all the inter-file connections made while building your
project are accomplished via build-time constants. This may not always be
so, but it’s a useful way of thinking about your projects, especially for the
purpose of splitting it into pieces.

Any place where an object is shared only via a constant is a good place to
split up an application. You do this by moving the protos, layouts, or text
files out of the main project and into a new project of their own. This new
project will create an auto part that exports the shared objects.

continued from page 1

Using Unit References to Speed Application Development

Newton Technology Journal October 1996

4

That’s really all you need to know. That idea, along with the unit
reference documentation, will let you break your big packages into smaller
ones that can be downloaded individually, vastly reducing the time it takes to
build, download, and test any one of them.

But keep reading. The rest of the article will describe one way to create the
interface between the projects so that no existing code needs to change. It will
also describe some things I do to help with debugging a project built this way.

CONSTANT AGONIZING

For constants provided via text files, either with DefConst or the
constant keyword, both the code that defines the constant and the
code that uses the value of the constant are using the same symbol. This
seems obvious. It wouldn’t work any other way!

Less obvious is that this is true for layouts and protos as well. Earlier I
mentioned that NTK provides access to layouts and protos through the build
time constant function GetLayout. The old way was to use a constant
named layout_filename, and this is still supported. In fact, NTK 1.5 and
1.6 use the constant named layout_filename to implement the
GetLayout function. The only thing a layout or proto really produces is
a constant with the special name.

When sharing an object via unit references, you could name the reference
anything you like. However, the symbol that’s the name of the constant, e.g.
‘layout_filename, turns out to be an excellent choice. It’s a good
choice because all your code that uses the object is already written to use
that symbol, and the name in the unit reference declaration will be the only
commonality between the exporting project and the importing project.

After the project is split, the code that defines the constant is in a different
project than the code that uses it, so we’ll actually create two constants, one
in each project. By using the same symbol for the names of them in both
projects, none of the existing code needs to be edited.

Build-time global variables don’t fit into this scheme. That’s OK, because
build-time globals aren’t the right tool for this kind of project design. Build-
time constants fill the same need, and are handled better by the compiler.
There are times when a build-time global variable is the right thing to use to
solve a problem, but those cases don’t require the global to be shared
between projects, so they’re irrelevant to this article.

USING UNIT REFERENCES

The core of the unit reference mechanism is implemented by three
functions. DeclareUnit tells NTK that a unit is being used, the major
and minor version of the unit, and the names of the objects within the unit.
It must be called by both the importing and exporting projects.
DefineUnit defines the objects that the unit will contain, and is called
only by the exporting project. UnitReference gives you a “magic”
reference to an imported object that will be hooked up at run time by the
OS. UnitReference is needed in the importing application, though it
can be used by the exporter as well.
DeclareUnit requires a declaration frame. This is a frame that

declares what will be shared. The names of the slots provide the names for
the objects in a unit, and the values of the slots are unique integers. The
exporting project must provide a frame with unique sequential integers
starting with 0. Importing projects are allowed to have gaps. This allows you
to keep some objects “private” by removing their entries from the declaration
frame when given to an importer. Read the unit reference documentation in
the Newton 2.0 Q&As or the “Moo Unit” sample code for more detail on how
unit references work.

THE INTERFACE FILE

Since we’re using units for development only, we don’t need to worry
about which objects are public and which are private. The exporting project
and the importing project will share the same declaration frame for a unit.
It’s convenient to put the declaration frame and the code that uses it into a
text file, which I call an interface file.

The interface file we’ll create will be used in both the exporting project
and the importing project. Again, this isn’t a requirement for using unit
references with NTK, but it’s a very convenient way to make sure the two
parts stay in sync. Here’s what an interface file will contain:

constant kPart1Sym := ‘|Part1:EBERT|;
constant kPart1Declaration := ‘{

layout_protoFoo: 0,
layout_AboutSlip: 1,
kMungeAStringFunc: 2,

};
DeclareUnit(kPart1Sym, 1, 0, kPart1Declaration);

The symbol in kPart1Sym is the name of the unit, and must be
unique in the Newton, so a registered signature is used. You should put this
same symbol in the app symbol field of the auto part’s project preferences.
I’ll tell you why in a moment.

I’m specifying three things in this unit: a user proto, a layout, and a
constant that happens to contain a function. The unit has major version 1,
and minor version 0. I never change these numbers during development.

Here’s some additional code that I put in my interface files:

if kAppSymbol <> kPart1Sym then
// building importing project, so create constants
begin

DefGlobalFn(‘ImpureUnitRef,
constantFunctions.UnitReference);

foreach slot, value in kPart1Declaration do
DefConst(slot, ImpureUnitRef(kPart1Sym, slot));

end

This code creates a constant for each slot in the unit reference declaration
frame, but only for importing projects! The exporting project already has the
constants in the text files, layouts, or user protos. That’s why we made the
unit symbol the same as the appSymbol—testing kAppSymbol against
the unit symbol is an easy way of telling if the code is being compiled in the
exporting or an importing project.

This code also does something unusual. UnitReference is a
constant function, and so it can only be called with constant arguments. In
order to make the loop work properly, we need to call the function with the
slot variable from the loop. So we cheat and define a new “normal”
global function called ImpureUnitRef that’s the same as the constant
function UnitReference. This trick works in NTK 1.5 and 1.6, but it’s
not guaranteed to work in the future.

Note that exactly the same thing could be accomplished, in a supported
way, like this:

DefConst(‘layout_protoFoo,
UnitReference(kPart1Sym, ‘layout_protoFoo));

DefConst(‘layout_AboutSlip,
UnitReference(kPart1Sym, ‘layout_AboutSlip)

DefConst(‘kMungeAStringFunc,
UnitReference(kPart1Sym, ‘kMungeAStringFunc)

This may seem simpler, and even shorter for this example. However, I
don’t do it this way because it requires me to edit more code every time I
add, remove, or change the name of a shared object. If you use the loop, the
only thing in the interface file that needs to be edited as the projects change

is the kPart1Declaration frame. I think this is safe because
during development I typically upgrade NTK much less frequently than I edit
the contents of my units.

THE EXPORTING PROJECT

There’s a little more code that needs to be written to make it all hang
together. The exporting project needs to actually specify the objects to
export. Create a new text file only for the exporting project with the
following code:

DefConst(‘kPart1Objects, {
//<refSym>: <refValue>

layout_protoFoo: layout_protoFoo, // old
layout_AboutSlip: GetLayout(“AboutSlip”), // new
kMungeAStringFunc: kMungeAStringFunc,

});
DefineUnit(kPart1Sym, kPart1Objects);

That’s it! You may ask “Why create the constant kPart1Objects at
all? Why not just put the frame right in the call to DefineUnit and be
done with it?” That would work fine, but once again I do a little bit more.
Here’s what else I put in the exporting project’s definition file, strictly for
debugging:

if kDebugOn then
begin

InstallScript := func(partFrame, removeFrame)
begin

DefGlobalVar(EnsureInternal(kPart1Sym),
kPart1Objects);

foreach slot, value in kPart1Objects do
DefGlobalVar(EnsureInternal(slot), value);

end;
RemoveScript := func(removeFrame)

begin
foreach slot, value in GetGlobalVar(kPart1Sym) do

UndefGlobalVar(slot);
UndefGlobalVar(kPart1Sym);

end;
end;

What this does is create a bunch of run-time global variables. One of the
variables will have the same name as the unit, in this case
|Part1:EBERT|, and will be a frame with all the exported objects.
The UnitReference function doesn’t work at run-time, so without
sticking a reference to the exported objects in some easily accessible frame it
could be hard to locate them later.

The rest of the globals each have the same name as the objects being
exported. Note that I don’t include my registered signature in the names of
each of these constants. That means there’s some chance one of my names
will collide with some system object. I typically name things esoterically
enough to prevent this. It’s unlikely that a system object will be called
layout_protoFoo, but you should keep the danger in mind if you
do the same thing.

You’re probably asking “Why even bother creating all those individual
constants? Surely having the values available via the one global frame is
sufficient?” I create the extra globals because I’m lazy. I like to prototype
code in the inspector, to get it more or less working before I make it part of a
project. Global variables and constants are accessed using identical syntax.
Having the global variable available at run time for the inspector with the
same name as the constant that’s available at build time for the compiler
means I can copy/paste code between the inspector and the project and not
edit it. call kMungeAStringFunc with (“Your
Name”) works in either place.

If you haven’t caught on yet, I like it a lot when the same code works in

different environments or when put together different ways, especially when
no editing is necessary. I’m a very lazy programmer.

ABOUT USER PROTOS AND LINKED LAYOUTS

User Protos do a wee bit more than just provide a constant. When a user
proto is in a project, NTK knows to put its name in the palette so you can
drag one out. After the split, a user proto may no longer be in the same
project as the code that uses it. So what do you drag out?

I drag out a protoFloater instead, then add an after script to fix
up the contents of the _proto slot. Any predefined proto would work,
but protoFloater just happens to be on the palette and not add any
extra default slots. The afterScript looks like this:

thisView._proto := GetLayout(“protoFoo”);

The same can be done for linked layouts. After the split, the linked layout
may no longer be in the same project as the layout it’s linked to.
protoFloater to the rescue again! Just drag out a
protoFloater instead of a linked layout, and have the
afterScript replace the _proto slot:

thisView._proto := GetLayout(“AboutSlip”);

This actually does not produce the same result as a real linked layout. We
end up with an extra level of _proto inheritance that wouldn’t be there
with normal linked layouts. It is possible to completely simulate what NTK
does when it links a layout. However, fully integrating a declared linked
layout requires understanding of the Newton view system declare
mechanism, which is beyond the scope of this article. Using a
protoFloater is the simplest solution, since it lets you declare the
views in NTK, just like you would with linked layouts.

SUMMARY

It takes just a few simple steps to split a project up into separate
compilation units that will exist at run time as separate packages and share
objects via unit references. The steps are:

• Remove the layouts, protos, or text files from the main project.

• Put them in a new project that produces an auto part.

• Create the interface file containing everything that’s shared.

• Place it at the beginning of the exporting project.

• Create the definition file for the new project.

• Put it at the end of the exporting project.

• Build and download the exporting package.

• Add the interface file at the beginning of the main project.

• Build and download the main package.

Everything should end up working exactly as it did before. Notice that you
didn’t edit any of the “source” layouts, protos, or text files at all! (Okay, except
maybe to clean up the _proto slots for user protos or linked layouts.)

October 1996 Newton Technology Journal

5

NEXT STEPS

For interim or “beta” releases, you can make the main project a multi-part
package that contains all the exporting parts as well as the main part, so your
beta users only see one package. Remember that the unit reference
mechanism works on a part-by-part basis, so there’s no reason the exporting
part and the importing part can’t be in the same package.

When you’re ready for your final build, you can just drop the source files
right back into the main project. Put them right where the interface file was,
and remove the interface file from the main project. This time you don’t
have to edit anything at all, even trivially.

There’s actually no compelling reason to ever put the files back in a single
part. The code will all work fine as a multi-part package. I have a suspicion
that performance will improve if everything is in one part. I believe this
because unit references must cost something, but I have not measured the
costs. The locality of the package (in other words, which objects are next to
which other objects) will also change when switching from separate packages
to a multi-part package to an all-in-one package, and this can affect
performance. I recommend trying the various configurations and choosing
the one you like best.

A BUG TO WATCH OUT FOR

There is a bug with unit references in the 2.0 OS. Sometimes when an
importing package is installed before an exporting package, the unit
references are not properly connected. When this happens, an exception will
be thrown when the bad reference is followed by the importer. You can work
around the problem by reinstalling the importing packages. By the time this
is published, Apple Computer will probably have released a system update
that fixes this bug, so that you can re-download an exporting package many
times without touching the importer.

CONCLUSION

With the invention of unit references, it’s now easier than ever to split a
large application into separate compilation units. What’s more, these units
can be put in individual packages and downloaded separately. Over a full
project development cycle, this could amount to days or even weeks of your
time, much less than the time needed to split up the application. The
technique also encourages a good coding discipline, and can be used to allow
teams of programmers to work together on large applications.

interface requirement from the Original Equipment Manufacturer (OEM).
This allows a consistent user interface for all wireless messaging products that
use the Messaging Enabler.

Is it for you?
Of course, the Messaging Enabler won’t be suitable for every messaging

system. It has been designed to enable as many of the wireless messaging
systems as possible. If you want to enable a piece of hardware for the
Newton platform, then it may be worth using the Messaging Enabler if the
hardware can receive, and possibly send, messages wirelessly (for instance
pagers, wireless PC cards, etc.).

A good understanding of routing is recommended for developers using
the Messaging Enabler or writing a message module. Although an
understanding of transports may be helpful when writing a message module,
it is not required. You can find information on routing and transports in the
“Newton Programmers Guide: Communications.”

The Messaging Enabler does most of the work for you, so that you can
have your hardware up and running as soon as possible. The exciting
features of the Messaging Enabler are covered below.

Message modules have many options that may be customized so you can
support features specific to the messaging device being used.

Most Newton applications that support routing can use the messaging
device via the Messaging Enabler with no changes. This is due to the
NewtonScript routing mechanism. Applications can also be designed to
control the Messaging Enabler directly which is ideally suited for applications
targeted to a vertical market.

Features
The following list of features should give you a better idea of some of the

functions provided by the Messaging Enabler:
Standardized preferences for wireless messaging.

Figure 1: Messaging Enabler Preferences

Device specific preferences. Note that not all of these preferences will
necessarily be displayed for each device.

Figure 2: Device Specific Preferences

NTJ

October 1996 Newton Technology Journal

6

continued from page 1

Newton 2.0 Messaging Enabler - Get your Messages Movin’

Newton Technology Journal October 1996

7

Send routing slip(s).

Figure 3: Paging Routing Slip

Paging address data definitions. This extends the in-built address data
definitions.

Figure 4: Pager Address Listpicker

Message replying. Some 2-way messaging devices can reply to received
messages, for instance the Motorola Tango™.

Figure 5: Message Reply Picker

Automatic message retrieval. Automatic control and combination of
multi-part messages.

Text message viewing/editing/and put away.

The following message shows an item in the In Box made up of two
combined messages.

Figure 6: Displayed In Box Message

Manage and control the I/O Box.
User status feedback.

How it ticks

Figure 7: Messaging Enabler Hierarchy

As this diagram shows the Messaging Enabler fits in at the same location
in the Newton communications layering as a 2.0 Transport.

Installing a message module
To add a message module to the system, you create an auto part. This

means that when a message module is installed, it adds services to the system
but does not add an application to the extras drawer; however, an icon is
added to the “Extensions” folder. You define a message module based on the
prototype, protoMsgModule. To add the defined message module to
the system, you call the RegMsgModule platform file function from
your auto part’s InstallScript function with the template you have
defined.

call kRegMsgModuleFunc with (
kAppSymbol,
partFrame.partData.TestEnabler

);

To unregister the message module you need to supply two part frame
functions: DeletionScript and RemoveScript. The DeletionScript function will
call the DeleteMsgModule platform file function to remove any preferences
for the message module, and also ensures your message module
RemoveScript is called.

SetPartFrameSlot(
‘DeletionScript,
func() begin

call kDeleteMsgModuleFunc with (
kAppSymbol

);
end

);

In your RemoveScript of the auto part you should deregister the
message module by calling the UnRegMsgModule platform file
function:

call kUnRegMsgModuleFunc with (kAppSymbol);

Working with callbacks and events
Most of the methods defined in protoMsgModule take a callback

as one of the parameters. The Messaging Enabler will call methods that you
override in protoMsgModule when the Messaging Enabler needs to
perform a particular operation. For example: When the Messaging Enabler
needs a message from the message module, it may send the
GetNextMessagemessage, which could be implemented as follows:

GetNextMessage := func(callBack) begin
....
.... // go get the next message
....
:doEvent(

kEV_PROGRESS,
{ type: ‘vBarber,

statusText: “Almost done...”
}

);
....
:doCallBack(

callBack ,
kRES_SUCCESS,
message // your retrieved message

);

end; // GetNextMessage

Note that the calls to the internally defined methods of
protoMsgModule, doEvent, and doCallBack. The
method doEvent was used to change the status display. The Messaging
Enabler provides a default status display but by sending events to the
Messaging Enabler this can be customized. Sending the doCallBack
message is required to inform the Messaging Enabler when the operation for
GetNextMessage has been completed. This also returns the result
from the requested operation.

You may send other events to the Messaging Enabler to let it know when
certain things happen. For example, if a new message has been received, you
would send a kEV_MESSAGE event to alert the Messaging Enabler to
read the message. You would do this by sending the doEvent message.

Need to send messages?
To support sending you need a SendOptions frame and a

SendMessage method. The SendOptions frame defines options
for sending messages. The Messaging Enabler will call the
SendMessagemethod when a new item needs to be transmitted. The
main slot required for the SendOptions frame is
routeSlipType. This defines the addressing type to use when
sending. The Messaging Enabler adds a paging data definition to the system.
For more information about data definitions, please see the “Stationery”
chapter in the Newton Programmers Guide: System Software.

A new item will be added to the action picker based on the
SendOptions frame contents. A typical SendOptions frame
might be similar to the following:

{ routeSlipType: ‘|nameRef.people.pager|,
replyTypes: [‘ack, ‘user, ‘canned],
dataTypes: [‘text, ‘frame],
group: ‘page,

groupIcon: ROM_RoutePageIcon,
groupTitle: “Page”

}

Figure 8: Notepad Routing Picker
This means that any Newton application that supports routing for either

‘text or ‘frame datatypes will now be able to send this data as a page.
See the “Routing Interface” chapter in the Newton Programmers Guide:
Communications.

What’s your preference?
The Messaging Enabler provides several different mechanisms for

controlling user preferences. The main preference slip as seen in Figure 1
contains several items that will only be visible if your message module
overrides certain prototype slots. For example, the first option, “When
receiving,” will only be visible if your message module sets the
dirSupport slot to true. (Note, however, that this labelpicker may
still be visible if another installed message module has this set.)

A separate view displays the hardware preferences for each messaging
device. The Messaging Enabler provides five generic preferences that you
may use as seen in Figure 2. These preferences are very easy to set up. All
that is needed is an array of strings that become the options for each
preference (such as the labelCommands for the labelPicker).
For example, you could set soundStrings to the following array:

[“Off”, “Tunes”, “Annoying”, “Loud”]

to correspond with the hardware options for the particular messaging device.
Note that the first array item will be the default for each of the preferences,
so it is important to make the most reasonable preference setting the first
item in the array. The Messaging Enabler determines when these
preferences need to be set and will call the SetConfigmethod of the
message module at the appropriate time.

A third way to provide user preferences gives more customization control,
but also requires more work. Provide your own preference view template.
You might need to do this if there is some special setting that is not covered
by any other preference controls. You supply this view template in the
prefsTemplate slot of your message module.

As you can see, there are several levels of control for the user preferences.
In most cases, it is important to remember that less is often better. Most users
work better with devices that function in an expected manner, rather than
having to set a bunch of preferences to get them to work a particular way.

Controlling the Messaging Enabler.
The Messaging Enabler may also be controlled by an installed Newton

application. This feature is intended primarily for vertical applications (such
as a health-care dispatch application) that would need to set the preferences
explicitly.

To change the Messaging Enabler preferences an installed Newton
application would call the TransportNotify global function.

October 1996 Newton Technology Journal

8

Newton Technology Journal October 1996

9

For example:

TransportNotify(
‘MsgEnabler,
‘ChangeConfig,
[callBack,

{ disable: true,
autoStatus: nil,
hideItems: nil,

},
{ deviceSym: ‘MM_msgModule,

powerIndex: 1,
portIndex: 2

}
]

);

This does the following:

• Disables the user access to the Messaging Enabler preferences so they
cannot be changed.

• The status dialog will not be automatically opened. (The user can still see
the status if it is selected from the Notify Icon at the top of the screen.)

• The Messaging Enabler items will not be displayed in the I/O Box.
• The installed message module MM_msgModule will have its

preferences set to the second item in the powerStrings array and
the third item in the portStrings array.

As you can see, this gives an application the necessary control over the
Messaging Enabler. There are many other preferences of the Messaging
Enabler that can also be set in this way.

Note that this function is designed to be integrated with a single Newton
application and is ideally suited for vertical market applications. If two
separate Newton applications were to attempt this operation, the Messaging
Enabler preferences would be set to a combination of these two applications
and the results would be unpredictable.

Give me those In Box items!
So how does an installed Newton application get the items from the

Messaging Enabler once they are in the In Box? Because the Messaging
Enabler is a transport, any installed application can receive items from the
messaging enable using the standard Newton routing APIs.

Please refer to the “Newton Programmers Guide” for a description of the
different mechanisms available for routing items from the In Box, specifically
RegInBoxApps, RegAppClasses, PutAway and
AutoPutAway.

* And remember that the names of the innocent have been changed to
protect the guilty.

Editing support; R. Robertson, J.C. Bell & A. Weiss.
NTJ

Mock Entries for Debugging
by Bob Ebert, Newton Developer Technical Support.

Advanced Techniques

THE PROBLEM

The NSDebugTools package, part of NTK 1.6, allows you to set break
points in NewtonScript code. This is very powerful and will help you find
many of your bugs which don’t raise exceptions. However, once in a while
what you need to know is when some object is accessed, not when some line
of code is executed. One way to do this is to set the global variable trace
to TRUE, but then you typically have to wait a long time for the trace output
to stop scrolling by, then wade through reams of data to find the accesses
you’re interested in.

MOCK ENTRIES TO THE RESCUE

A little-known and even less frequently used feature that was added to the
Newton OS in the 2.0 release is the ability to create entry-like objects, called
Mock Entries. These objects are composed of two parts. One part is a
simple NewtonScript frame, often called the cached entry. The other part is
a handler which knows how to create and save the cached entry. The parts
together are sometimes called a fault block; when something needs the
cached entry and it doesn’t exist, a fault occurs and a message is sent to the

handler, which then creates or faults in the entry.
The Newton OS in 2.0 allows you to create these fault blocks for your own

objects, which means you get to write the code that executes when the
cached object needs to be faulted in. The code that creates the cached entry
can also do other things, for example it could enter a breakloop, which would
give you a chance to look at the stack and see what’s accessing the frame.

Here’s a simple example of using a fault block for debugging. We’ll create
a simple frame that prints an exclamation point in the inspector and beeps
the speaker every time it’s accessed.

handler := {
object: {foo: ‘bar},
EntryAccess: func(mockEntry)

begin
write(“!”);
GetRoot():Sysbeep();
object;

end,
};

f := NewMockEntry(handler, nil);

f is now a Mock Entry. Here’s how it looks to the OS:

When any slot in f needs to be accessed, the OS checks to see if there is
a cached object. Because we passed NIL as the 2nd argument to
NewMockEntry, and EntrySetCachedObject hasn’t been
called, there will be no cached object for f. When there is no cached object,
the OS calls the handler’s EntryAccessmethod, which is expected to
create the cached object, tell the OS about it using
EntrySetCachedObject, and return it.

We cheat and don’t call EntrySetCachedObject. The OS uses
the return value of EntryAccess as the object for this access, and since
we return handler.object everything works, but next time
something touches f, EntryAccess will be called again. There’s our
hook—every time some part of the OS reads or writes any slot in f,
EntryAccess is called.

To almost all of the Newton OS, f looks like a regular frame. f.foo
evaluates to ‘bar. ClassOf(f) is ‘frame. f.baz := 42
will add a slot to the frame, which is also referenced as
handler.object in our example, so the next time the frame is
accessed, the modified object will be returned. The illusion is complete, only
the test function IsMockEntry() can tell that f is a mock entry and not
a normal NewtonScript frame.

AN IMPROVEMENT

If you try this, you’ll see that the frame is accessed a lot more often than
you might think. Getting the value of f.foo calls EntryAccess
twice. Setting a slot also calls EntryAccess twice. Creating a new slot
calls it 11 times. The print function must do a lot, because printing f in
the inspector calls the EntryAccessmethod a whole bunch of times.

In our application debugging example above, we really only want to know
when the object is being used for the first time in a while. Recall that if the
OS finds that a cached object exists, it won’t call EntryAccess but will
simply use the object. So to prevent excessive calls, our EntryAccess
method will now create the cached object. The trick then becomes clearing
the cached object. I’ve found that clearing the object at a deferred time
works well—typically it’s cleared the next time control returns to the top
level, which is soon enough to catch most bugs. Here’s how to do that: (the
bold text is new)

handler := {
object: {foo: ‘bar},
EntryAccess: func(mockEntry)

begin
write(“!”);
GetRoot():Sysbeep();
EntrySetCachedObject(mockEntry, object);
AddDeferredCall(

GetGlobalFn(‘EntrySetCachedObject),
[mockEntry, nil]);

object;
end,

};
f := NewMockEntry(handler, nil);

You might want to experiment with clearing the cached object at other times.

LIMITATIONS

The EntryAccessmethod of the handler object is called only when
a slot in the frame is accessed. That is, a statement like g := f won’t
cause the EntryAccessmethod to be called, since no slot in f is
accessed. The result of that statement will be that you now have two
references to the mock entry “fault block”, and either g.foo or f.foo
will cause the EntryAccessmethod to be called.

The Newton 2.0 OS only supports creating mock objects that are backed
up by frames. While it’s not guaranteed, you might experiment and see what
happens if the object is an array or a binary object. (But back up your data
first!) Try some special case binary objects like strings or real numbers.
Depending on your situation, you may be able to use this debugging
technique with arrays or binary objects as well as with frames.

I’ve found that some parts of the OS work normally in this case—the
mock object is treated just like a string, bitmap, array, or whatever. Other
parts of the OS “notice” that the object is a fault block and not the
appropriate object type, which typically causes a throw. The error messages
in this case can be interesting. For example, putting the string “foo” in
the object slot of the handler will create an object that appears to
be a string. Printing works, but functions like StrLen(f) or the
accessor f[0] “notice” that the object isn’t a string, and throw with the
seemingly contradictory error message: “Expected a string,
got “foo”.” This happens because the exception printer doesn’t notice
that the mock object isn’t a string, and so it calls EntryAccess, gets the
string, and prints it.

ADVANCED TECHNIQUES

You can put any NewtonScript code in the handler, specifically in the
EntryAccessmethod, so you can use this trick to do other things. For
example, you could add a counter and find out how many times a frame is
accessed during some operation. You could add in a test to see if some slot
in the frame has changed, and stop when it gets a certain value.

Unfortunately, when the EntryAccessmethod is called you don’t
have any information about what’s happening. You can’t tell if a slot is being
read or set. You can’t tell which slot (or element, or byte) is being accessed.
If you write code that watches for changes you end up finding out after the
change takes place.

But this can still be useful. Consider if your handler set trace to
TRUE and then set it to NIL again in a deferred call. This would do a great
job of limiting the trace output to only code that actually used the object.
The EntryAccessmethod might also watch for some change and,
upon detecting the change, set trace to NIL and enter a breakloop.
That way you’d know without doubt that the last section of trace output was
the one you needed to look at.

You might even consider using mock objects to implement a kind of
sentinel that lets you know when other applications access your objects.

CONCLUSION

Being able to have your code execute when a frame is accessed is
powerful, and has lots of good uses. However, keep in mind that any
observations you or I make about how the OS deals with mock objects
should be used only for debugging. That is, it would be a mistake to write
production code that relies on EntryAccess

October 1996 Newton Technology Journal

10

NTJ

Newton Technology Journal October 1996

11

#440F63D {_parent: {_parent: {#440D221},
_proto: {#6008D0C1},
viewCObject: 0x110926D,
viewclipper: 17863292,
base: <1>,
viewFlags: 577,
viewBounds: {#440F5C1}},
_proto: {buttonClickScript:<function, 0 arg(s)#6008D239>,
text: “Beep”,
viewBounds: {#6008D539},
_proto: {@226}},
viewCObject: 0x110A530,
viewFlags: 515}

Now, let’s get the parent slot and we will have the right view:

floatNGo := beepingButton._parent
#440F5DD {_parent: {minute: 178,

downButton: {#440B2E9},
calculator: {#4406159},
mailEditor: {#44064C1},
extrasDrawer: {#4409671},
defaultTransport:Newton: {#4405DD9},
OutOfMemoryAlert: {#4405D95},
notification: {#4405D35},
remindSlip: {#44060C5},
namesButton: {#44063D9},
folderEdit: {#4405DF1},
phoneKeyboard: {#4405ECD},
ovButton: {#440643D},
upButton: {#4406461},
thegang: {#44065F9},
printerSerialPicker: {#4405D05},
...},

_proto: {viewBounds: {#6008D199},
stepChildren: [#6008D1B9],
_proto: {@180},
debug: “myFloatNGo”,
appSymbol: |Demo:NTK.Demo|},

viewCObject: 0x110926D,
viewclipper: 17863292,
base: <1>,
viewFlags: 577,
viewBounds:{left:-25, top:173, right:139, bottom:265}}

The numBeeps slot doesn’t seem to be in the floatNGo. The view
otherwise appears to be correct. It sounds like a problem in declaring. Let’s
check the Template Info dialog for that template (see Figure 3). Well, well,
well. Turns out it actually wasn’t declared. We’ll checkmark the “Declare To:”
checkbox and rebuild.

Figure 3: Template Info dialog showing undeclared numBeeps.

BEEPING BUTTON BROUHAHA

We’ve written a very simple application in which the user can write a
number. Pressing the “Beep” button makes the Newton beep that many
times. Figure 1 shows the application. Figure 2 shows the application
templates in NTK.

Figure 1: Beeping Button application.

Figure 2: Structure of the Beeping Button project.

FIRST PROBLEM

The first thing that happens when we write in a number and then press
the Beep button is a notification on the Newton: “Sorry, a problem has
occurred (-48807).” Let’s turn on breakOnThrows (clicking the icon in
the Inspector Window) and press the button again. Now, the Inspector prints
out

Undefined variable: numBeeps
evt.ex.fr.intrp;type.ref.frame
-48807

(#6008D1D1).buttonClickScript(), 3: Push ‘text
Entering break loop: level 1

If we look at the code we see that we’re trying to access the
numBeeps variable from our buttonClickScript. That variable
should refer to our protolabelInputLine view. What could be
wrong? If we’ve correctly declared numBeeps to the
protoFloatNGo, the protoFloatNGo view should have a slot
named numBeeps. Let’s look in that view for numBeeps. (That view is
the parent of our current self.).First, let’s get self:

// get current self
beepingButton := GetCurrentReceiver(0);

Debugging Tutorial: Finding & Fixing Bugs in an Application
Julie McKeehan and Neil Rhodes, Academic Press. 1996

Understanding NewtonScript

Excerpted from Programming for the Newton, 2nd edition

SECOND PROBLEM (A HARD ONE)
We rebuild, download, and rerun. We write in a number and tap the

“Beep” checkbox. We get the following error in the Inspector:

Undefined variable: numBeeps
evt.ex.fr.intrp;type.ref.frame
-48807

(#6008D229).buttonClickScript(), 3: Push ‘text
Entering break loop: level 1

This is exactly the same error at the same place we had it before. Let’s check
the floatNGo view again:

beepingButton := GetCurrentReceiver(0);
floatNGo := beepingButton._parent
and here is what we find when the Inspector returns our
result:
#4412B0D {_parent: {minute: 181,

downButton: {#440B129},
calculator: {#4406159},
mailEditor: {#44064A1},
extrasDrawer: {#4409651},
defaultTransport:Newton: {#4405DD9},
OutOfMemoryAlert: {#4405D95},
notification: {#4405D35},
remindSlip: {#44060C5},
namesButton: {#44063D9},
folderEdit: {#4405DF1},
phoneKeyboard: {#4405ECD},
ovButton: {#440643D},
upButton: {#440EF4D},
thegang: {#44065D9},
printerSerialPicker: {#4405D05},
...},

_proto: {viewBounds: {#6008D1F1},
stepChildren: [#6008D211],
_proto: {@180},
debug: “myFloatNGo”,
numBeeps : NIL,
stepAllocateContext: [#6008D731],
appSymbol: |Demo:NTK.Demo|},

viewCObject: 0x1108C2C,
numBeeps : {_parent: <2>,

_proto: {#6008D5D1},
viewCObject: 0x1109F0C,
entryLine: {#4419229},
labelLine: {#4418E49},
width: 73,
indent: 75,
height: 13},

viewclipper: 17863746,
base: <1>,
viewFlags: 577}

The numBeeps slot seems to be there and seems to point to what
looks like it could be our view. Let’s try to access it from the Inspector:

floatNGo.numBeeps
#2 NIL

That doesn’t make sense. We can see that it is there. Let’s try another way to
get to that view using the Debug function:

Debug(“numBeeps”)
#2 NIL

Curiouser and curiouser. However, look very closely at the way the
numBeeps slot prints out versus any other slot:

_proto: {viewBounds: {#6008D1F1},
stepChildren: [#6008D211],
_proto: {@180},
debug: “myFloatNGo”,
numBeeps : NIL,
stepAllocateContext: [#6008D731],
appSymbol: |Demo:NTK.Demo|},

viewCObject: 0x1108C2C,

numBeeps : {_parent: <2>,
_proto: {#6008D5D1},

Other slots have no space before the colon (“:”), while the numBeeps
slot has one space there. Could this have anything to do with our problem?
What if that space were significant? Let’s try calling Debug with an extra
space after numBeeps:

Debug(“numBeeps “)

and here is the Inspector return result that we get:

#4418AF5 {_parent: {_parent: {#4412B25},
_proto: {#6008D0C1},
viewCObject: 0x1108C2C,
numBeeps : <2>,
viewclipper: 17863746,
base: <1>,
viewFlags: 577},

_proto: {viewBounds: {#6008D681},
label: “Num Beeps:”,
entryFlags: 10753,
_proto: {@189},
debug: “numBeeps “,
preAllocatedContext: |numBeeps |},

viewCObject: 0x1109F0C,
entryLine: {_parent: <2>,

_proto: {#356429},
viewCObject: 0x110A83B,
viewFlags: 10753,
viewBounds: {#4418F4D},
text: “2”},

labelLine: {_parent: <2>,
_proto: {#356569},
viewCObject: 0x110A871,
text: “?Num Beeps:”,
viewFont: {@100},
viewBounds: {#4418E2D}},

width: 73,
indent: 75,
height: 13}

So if it acts as though the name had an extra space—maybe it does. Let’s
check the Template Info dialog for that template more carefully (see Figure
4). Indeed, there is a trailing space after numBeeps. We’ll delete it and
rebuild.

Figure 4: Template Info dialog for numBeeps
with an extra space at the end.

THIRD PROBLEM

We rebuild, download, and rerun. We write the number “2” and tap
“Beep.” We get the following error in the Inspector:

Expected an integer, got nil
evt.ex.fr.type;type.ref.frame
-48406
(#6008D229).buttonClickScript(), 27: PushConstant NIL
Entering break loop: level 1

October 1996 Newton Technology Journal

12

Newton Technology Journal October 1996

13

We’re still in our buttonClickScript, about to execute the code at
program counter 27. Here’s the NewtonScript code for the
buttonClickScript:

func()
begin

local beeps := StringToNumber(numBeeps.text);
for i := 1 to beeps do

:SysBeep();
end

Let’s look at the disassembled code for the
buttonClickScript:

Disasm(GetCurrentFunction(0))
0: FindVar numBeeps
1: Push ‘text
2: GetPath 1
3: Push ‘StringToNumber
4: Call 1
5: SetVar beeps
6: PushConstant 1
7: SetVar i
8: GetVar beeps
9: SetVar i|limit

10: PushConstant 1
11: SetVar i|incr
12: GetVar i|incr
13: GetVar i
14: Branch 23
17: PushSelf
18: Push ‘SysBeep
19: Send 0
20: Pop
21: GetVar i|incr
22: IncrVar i
23: GetVar i|limit
24: BranchIfLoopNotDone 17
27: PushConstant NIL
28: Return

#2 NIL

We’re about to execute the code at offset 27—it looks as though we’re at
the end of the loop. Let’s look at the values of our variables to see if they are
reasonable:

GetAllNamedVars(0);
#4419641 {beeps: NIL,

i: 1,
i|limit: NIL,
i|incr: 1,
numBeeps: {_parent: {#4418345},

_proto: {#6008D5D9},
viewCObject: 0x110A57D,
entryLine: {#44186F5},
labelLine: {#44181FD},
width: 73,
indent: 75,
height: 13},

text: “Beep”,
SysBeep: <function, 0 arg(s) #350E8D>}

It doesn’t seem right that beeps is nil. In fact, that would explain the
error we got. The for loop expected an integer, but got nil. But why is
beeps nil? It was obtained from calling StringToNumber on
numBeeps.text. Let’s start by looking at numBeepsmore closely:

numBeeps := GetNamedVar(0, ‘numBeeps);
#4417EA9 {_parent: {_parent: {#4411D11},

_proto: {#6008D0C1},
viewCObject: 0x110A483,
numBeeps: <2>,
viewclipper: 17863765,
base: <1>,
viewFlags: 577},

_proto: {viewBounds: {#6008D689},

label: “Num Beeps:”,
entryFlags: 10753,
_proto: {@189},
debug: “numBeeps”,
preAllocatedContext: numBeeps},

viewCObject: 0x110A57D,
entryLine: {_parent: <2>,

_proto: {#356429},
viewCObject: 0x110A58C,
viewFlags: 10753,
viewBounds: {#4418301},
text: “2”},

labelLine: {_parent: <2>,
_proto: {#356569},
viewCObject: 0x110A5C2,
text: “?Num Beeps:”,
viewFont: {@100},
viewBounds: {#44181E1}},

width: 73,
indent: 75,
height: 13}

Now let’s look at the value of the text slot in numBeeps. Expecting
to find the value of 2, we get a surprise instead:

numBeeps.text
#4632AD “”

There isn’t a text slot in the numBeeps view or template. So the value
of numBeeps.text must be coming from the
protoLabelInputLine itself. Notice, however, that there does
seem to be a text slot with the value “2” in
numBeeps.entryLine. But of course! For a
protoLabelInputLine, the input text isn’t found in the text slot of
the labelInputLine view, but in the text slot of the child view
where the input is actually done. With this bit of fresh information we can
now modify the code in the buttonClickScript.Our code
should actually be:

func()
begin

local beeps :=
StringToNumber(numBeeps.entryLine.text);

for i := 1 to beeps do
:SysBeep();

end

FOURTH PROBLEM

We rebuild, download, and rerun. We write in “2” in the input line and tap
the Beep button. We get the following error in the Inspector:

Expected an integer, got <a real number>
evt.ex.fr.type;type.ref.frame
-48406
(#6008D229).buttonClickScript(), 27: PushConstant NIL
Entering break loop: level 1

Hmm. This is the same location where we broke before. Last time the
error was “Expected an integer, got nil.” This time
it got a real number. Let’s take a look at beeps:

GetNamedVar(0, ‘beeps);
#4418E79 2.00000

Well, that’s the problem. The beeps variable is a real number, not an
integer. Using our brilliant deductive capabilities we realize that
StringToNumbermust return a real number. Let’s check within the
Inspector: continued on page 19

October 1996 Newton Technology Journal

14

This article is an excerpt from Newton User Interface Guidelines,
published by Addison-Wesley and summarizes what you should do to avoid
the top 20 user interface mistakes. The book provides detailed discussions of
the correct approach you should use for each of the situations described here.

Info Button
Use the Info button—with the “i” icon—and its picker for information

options such as Help, About, and Prefs. Always place the Info button at the
far left end of the status bar unless your application includes an Analog Clock,
which is optional.

New and Show Buttons
If users can create new items or display different views of information in

your application, include a New button and a Show button like the ones in
the built-in applications. Put the New button near the left end of the status
bar next to the Info button (if present), and put the Show button to the right
of the New button.

Screen Size
Design your application to handle any screen size and aspect ratio. If your

application can’t scale its views small enough or can’t rearrange view contents
to fit the aspect ratio, notify the user before closing your application.

Tapping v. Writing
Tapping is faster than writing, so for data input favor pickers, scrolling lists

and tables, radio buttons, sliders, and so forth over written input.

Picker Placement and Alignment
Align the top of a picker with the top of its button or label. Make

exceptions for overview pickers, for other very wide or very tall pickers, or for
small screens.

Display a picker so its button or label is at least partially visible, and keep
the button or label highlighted while the picker is open. (An overview picker
can cover the label or button that makes it appear.)

Field Alignment
Be consistent in how you align field values with field labels (including

picker labels). Generally you should line up a field’s label with the field’s
displayed value, not with the dotted line (if present) on which a user edits
the field value. In a view that has several fields in a column, line up the labels
at their left edges to insure a neat, orderly appearance for your application.

Close Box Size
Use a regular (small) Close box in a view where there are no adjacent

buttons. Use a large Close box only where there are adjacent text buttons or
standard-height picture buttons.

Button Location

Put buttons that affect an entire view at the bottom of the view, and put
buttons that only affect part of the view elsewhere. Group buttons that
affect content and appearance at the bottom left of a view, and put buttons
that control or initiate action at the bottom right.

Button Spacing
Space adjacent buttons three pixels apart, and leave four pixels between

buttons and the border of the view they’re in.

Button Size
Make every text button 13 pixels high and center the button’s name

vertically. Make the button just wide enough that with the button’s name
horizontally centered there are three or four pixels between the name and
the button’s left and right borders.

Capitalization
Capitalize the following items like sentences: check boxes, field

labels, and picker items. Capitalize the following items like book titles:
view titles, text button names, and radio buttons. In some contexts it
makes sense to capitalize differently, but your should be consistent
within an application.

Picker Icons
Think twice before including icons in pickers. They’re hard to design and

have limited benefit.

Dismissing a Slip
If dismissing a slip does not cause an action to take place (other than

accepting changes made to data in the slip), use a Close box for putting away
the slip. In this context the Close box means “close” or “put away.” Use a
take-action button and a Close box if users have a choice when dismissing
the slip of initiating an action or canceling. In this context the Close box
means “cancel.”

Take-Action Button
Name a slip’s take-action button with a specific verb such as Print, Fax,

or File. Only use vaguely affirmative names such as OK and Yes where you
want to force users to scan other parts of the slip to verify what action the
button initiates.

Fonts
Use fonts carefully. For the voice of the system and application use the

bold style of the System font in 9- or 10-point sizes. For values a user can
change use Casual 10- and 12-point. (Those are the fonts that are preset by
the system protos.)

Avoiding Common UI Mistakes

Product Development

Newton Technology Journal October 1996

15

than 29 pixels tall and wide. Leaving a little space helps separate icons.
Limit the length of an Extras Drawer icon’s name to between 9 and 11

characters per line. Put a blank space in the name where you want it to break
and wrap onto another line.

Make a Newton icon more distinctive and easier to identify by giving it a
distinctive silhouette rather than a boxy shape.

Storage
Allow users to move your application’s data between storage locations

with the Filing button in the Extras Drawer’s status bar. This is the method
used by the built-in applications.

Date and Time Input
To input dates and times use the specially designed Newton pickers.

Keyboard Button
If your application includes a Keyboard button on the status bar or at the

bottom of a slip, use the larger-size button (as in the Notepad) unless space
on the status bar is constrained (as in the Date Book).

Punctuation to Avoid
Don’t use ellipses (...) in button names, picker labels, or list-picker items.
Do put an ellipsis at the end of the title or the message text in a status

slip, but use three periods rather than an ellipsis character. Also use an ellipsis
to accommodate an item whose text is too long to fit on a line in the space
available for it (for example, in overviews).

Don’t use a colon at the end of a title, a heading, or a field label.

Extras Drawer Icons
To avoid overlapping icons in the Extras Drawer, make yours no more

Newton Connection Utilities 1.0 (NCU) is enabling technology that will
integrate your Newton device with your existing Windows PC or Macintosh
OS based computer. NCU will enable you to get connected with your favorite
desktop computer applications.

The features include Backup, Synchronize, Install, Import/Export and
Keyboard. The Backup function creates a backup file of your Newton PDA
and restores information from that file to your Newton device whenever
necessary. The Synchronize function enables direct exchange of information
between popular desktop applications and your Newton PDA. The Install
Package function enables the installation of Newton software onto your
Newton PDA. The Import function enables the sending of information from
PIMs, word processors, or text files into your Newton PDA. The Export
function enables the sending of information from your Newton PDA to your
personal computer in a variety of formats, including word processing and PIM
formats. The Keyboard function enables usage of your PC keyboard to enter
information directly into your Newton PDA.

Integrate the Newton with the following applications using NCU:

Mac OS based computer:
• Now Up To Date 3.0/3.5

• Now Contact 3.0/3.5

• Now DateBook 4.01

• Now TouchBase 4.01

• Claris Organizer 1.0

• RTF

• Delimited ASCII

Windows PC:
• Schedule+ 7.0

• Ecco 3.03

• Lotus Organizer 2.1

• SideKick95

• Sidekick for Windows 1.0

• Sidekick for Windows 2.0

• Delimited ASCII

• Word 2.0/6.0/7.0

NTJ

Get Connected!

Newton Directions

Newton Connection Utilities 1.0 Beta
this Summer, Shipping this Fall.
by Cami Hsu, Apple Computer, Inc.

NTJ

October 1996 Newton Technology Journal

16

The High Level Frame Desktop Integration Library (HLFDIL) is used to
move Newton frames and arrays to and from a desktop machine, running
either the Macintosh OS or Windows. (In common usage, HLFDIL is usually
shortened to Frame Desktop Integration Library, or FDIL, and the two terms
are used interchangeably throughout this article.) Before the HLFDIL can be
opened a connection between the Newton and the desktop machine must
be established using the Communications Desktop Integration Library
(CDIL).

The FDIL is used to map the dynamic structure of Newton frames to the
static structures used on desktop machines. As with the CDIL, it is
implemented in C++ but has a C language API. The basic assumption of
the FDIL is that the format of the Newton frames being moved is already
known. A C language structure having a one-to-one correspondence with the
Newton frame can be defined, and the desktop programmer can define the
mapping of slots to fields. However, since there are cases when the
programmer may not know the structure of the Newton frame in advance or
when additional slots have been added to the frame, there must be a way to
handle these unexpected or unknown slots. This is handled by the FDIL by
uploading these slots as unbound data, that is, data for which there is not a
previously defined memory location of the appropriate size and type. The
unbound data is therefore put into memory on the desktop machine in a
tree structure which defines where the data is in the NewtonScript frame in
relation to other slots in the frame.

Throughout this article, the use of the FDIL to transfer Newton frame data
will be discussed. However, it should be remembered that it is also used to
transfer Newton array data. It is worth noting that the FDIL cannot be used to
transfer simple data such as integers or strings unless they are part of a frame
or array. It is recommended that such data be transferred using the CDIL
mechanism, or put into a simple NewtonScript frame, such as
fooFrame:={myInteger:3}.

Opening the FDIL and Creating Objects
After the CDIL connection, or pipe, has been opened, the FDIL may be

initialized and used. The FDIL routine FDInitFDIL is called as follows:

fErr = FDInitFDIL();

Any error in initializing the library will be returned. FDIL errors fall in the -
28000 range and a complete list may be found at the end of the FDIL section
of the document Newton Desktop Integration Libraries which can be found
on the DIL web page at http://dev.info.apple.com/newton/tools/dils.html.

Next, one or more FDIL objects must be created using the routine
FDILCreateObject which is defined as:

DILObj *FDCreateObject(short objType,
char *objClass);

The first argument describes whether the object being created is an array

or a frame, and the second argument is an optional class name which
NewtonScript arrays may carry. Each frame or array which is transferred must
have a separate object created for it. This includes sub-frames and sub-arrays
within a parent frame or array.

For example, for the following NewtonScript frame, three separate FDIL
objects must be created before the frame can be defined on the desktop:

aFrame:={
name:”foo”,
phone:[“333-444-5555”,”101-202-3333”],
address:{street:”123 Main”, town:”Fooburg”,
state:’GA, postalCode:12345}
}

There must be an FDIL object for the main frame, aFrame, one for the
phone sub-array and one for the address sub-frame.

The calls to create these FDIL objects would look like this:

DILObj *aFrameObj, foneObj, addrObj;

aFrameObj = FDCreateObject(kDILFrame, NULL);
foneObj = FDCreateObject(kDILArray,”homePhone”);
addrObj = FDCreateObject(kDILFrame, NULL);

In this example FDCreateObject is called twice with the
predefined constant kDILFrame to create an object for defining a frame
and once to create an array object using the kDILArray constant for the
first argument. In the case of the array, we also supply the class name
“homePhone” as it is a named (classed) array. Named arrays are
described on page 2-9 of the NewtonScript Reference. (An electronic version
of this book is available from the Newton documentation web page noted
above.)

As of this writing a known bug exists which will throw an error on the
Newton when a string is downloaded, if an array includes an unnamed string
(that is, a classless string) as one of its elements. The work around is explicitly
to give unclassed strings the default class of “string” when they are array
members. See the routine DearchiveFrame in the FDIL Archive Lab
solution code for an example of this work around. This bug should be fixed
in future releases of the HLFDIL.

Defining Objects
Once you have created an FDIL object, you may begin to bind memory

locations to the object. This process describes to the FDIL where data being
transferred to or from the Newton will come from or go to. In other words,
by binding a memory location on the desktop to a slot in a Newton frame,
the FDIL knows where to put data or where to go to get data. The memory
locations used in this binding may be a variable on the stack, a global
memory location or a dynamically allocated heap location, depending on the
use and duration of the data being transferred.

The routine FDbindSlot is used to connect the memory location

The High Level Frame Desktop Integration Library (HLFDIL)
by Bill Worzel, Newton Developer Training

Communications Technology

Newton Technology Journal October 1996

17

with the Newton slot. Its formal definition is:

objErr FDbindSlot(DILObj *theObj,char* slotName,
void *bindVar, short varType, long
maxLen,long curLen, char *objClass);

The first argument (theObj) is the object created to define the frame
being transferred, and the second (slotName) is the name of the slot
that is being bound.

The third (bindVar) is a pointer to the memory location to which the
slot is being connected. When data is to be downloaded to the Newton this
will be the location of the data being sent. In the case of an upload from the
Newton this is the place where the received data will be put. In the latter case
it is up to the programmer to make sure there is enough room to hold the
data being received. The maxLen argument gives the total size of the
object’s buffer, and the curLen argument tells how much of that buffer
has been filled by your desktop application (that is, maxLen is used for
receiving data from the Newton device, and curLen is used for sending it).
In the case of an array or frame, maxLen and curLen should be set to -
1.

The varType argument describes what type of data object the slot
being bound is expected to be. The following table shows the existing types:

kDILPlainArray // as opposed to a classed array
kDILArray // array with class name associated
kDILBoolean // true or false
kDILUnicodeCharacter // 16-bit character
kDILCharacter // 8-bit ASCII
kDILFrame // object is a frame
kDILSmallRect // packs a Newton rect into a long
kDILImmediate // Newton immediate value (not int)
kDILInteger // 30-bit integer
kDILNIL // Newton nil value (NULL)
kDILBinaryObject // double or other binary sequence
kDILString // char *
kDILSymbol // handled as char *

Of these types several are worth special mention.
kDILArray versus kDILPlainArray - many arrays on the

Newton are simply sequences of data but a few have a class associated with
them. kDILPlainArray has no class associated with it while
kDILArray does.
kDILBoolean and kDILNIL - both have platform-specific

definitions for the values true, false and nil.
kDILSmallRect is automatically used when a frame on the

Newton which is used to store a rectangle is sent and the rectangle values
(top, left, bottom, right) all fit in a single byte value. In this case the values are
packed into a single long value.
kDILBinaryObject is used for any unspecified binary object

(such as sounds, pictures, and so forth) as well as for the Newton Real type.
Note, however, that unlike integers or immediates, platform-specific byte
ordering must be accounted for.

Make sure you compile using 8-byte doubles if you are going to transfer
Real numbers. When transferring Newton Real numbers, you must set your
development environment to use 8-byte double values or it will interpret the
reals received as a different value than expected. This is usually an option
specific to your system. For example, Metrowerks defaults to 4-byte doubles
and the 8-byte double option must be specified in the compiler options in
the Preferences menu item. MPW defaults to 8-byte doubles and so no special
action must be taken.
kDILString includes both classed and unclassed strings.
kDILSymbol is a Newton symbol (such as ‘mySymbol) transferred to

and from the desktop as a C string.
The last argument in FDbindSlot (objClass) is the class, if

any, of the object. While many objects on the Newton have no class
associated with them, many may have a class assigned by the programmer or
by the system. For example, while most strings have no class associated with
them, they may have one assigned explicitly by the Newton programmer.
Conversely, Newton Real numbers always are transferred as objects of type
kDILBinaryObject with a class of “Real.” If an object has no
special class associated with it, this argument should be a NULL to use the
default class symbol (“string”, “array”, “etc…). If it has a class it is transferred
with a C string, such as for the class name.

An example taken from the SoupDrink sample code involves downloading
a name frame to the Newton Name soup. The following pseudo-
NewtonScript describes a card frame and its associated FDIL type:

card := {

cardType:kDILInteger,
Name: kDILFrame,
Address: kDILString,
City: kDILString,
Region: kDILString,
Postal_Code: kDILString,
phones: kDILArray,
sorton: kDILString

}

This is only a code fragment from the SoupDrink example. The variables
shown (such as the name strings) are assigned values in earlier code. To see
the full code, see the SoupDrink code walk through.

In the same way the Name frame and the phones array may be
defined as:

Name := {

class: kDILSymbol,
first: kDILString,
last: kDILString

}

phones := [kDILString, kDILString, ...]

While not shown here, the elements of the phones array each have a
separate class associated with them such as “HomePhone,” “WorkPhone,”
and so forth.

The code to create the FDIL object for this structure is:

name = FDCreateObject(kDILFrame, NULL);
FDbindSlot(name, “Class”, (void *)&pClass, kDILSymbol,

strlen(pClass), -1, NULL);
FDbindSlot(name, “first”, (void *)&fName, kDILString,

strlen(fName), -1, NULL);
FDbindSlot(name, “last”, (void *)&lName, kDILString,

strlen(lName), -1, NULL);

phones = FDCreateObject(kDILArray, NULL);
FDbindSlot(phones, NULL, (void *)&phoneNo, kDILString,

strlen(phoneNo), -1, “HomePhone”));

entry = FDCreateObject(kDILFrame, NULL);
FDbindSlot(entry, “cardType”, (void *)&cardType,
kDILInteger, sizeof(int), -1, NULL) ;
FDbindSlot(entry, “Name”, (void *)name, kDILFrame, 0, -1,

NULL);
FDbindSlot(entry, “Address”, (void *)&addr, kDILString,

strlen(addr), -1, NULL) ;
FDbindSlot(entry, “City”, (void *)&town, kDILString,

strlen(town), -1, NULL) ;
FDbindSlot(entry, “Region”, (void *)&state, kDILString,

strlen(state), -1, NULL) ;
FDbindSlot(entry, “Postal_Code”, (void *)&zip,
kDILString, strlen(zip), -1, NULL) ;

FDbindSlot(entry, “phones”, (void *)phones, kDILArray, 0,
-1, NULL) ;

FDbindSlot(entry, “sorton”, (void *)&sName, kDILString,
strlen(sName), 0, “Name”);

Here the FDIL object’s name and phones are bound to slots in the
entry object. Note also that the string in the phones array has a class
associated with it, HomePhone. Once the entry object is defined it is
ready to be used to download it to the Newton.

Transferring Data
Once an FDIL object is created and the slots are defined by binding them

to desktop memory, it may be used to transfer data to or from the Newton.
This is done by using the routines FDget to upload and FDput to download
the object and its associated data. These routines are defined as:

objErr FDput (DILObj *entry, short type, CDILPipe *pipe);

objErr FDget (DILObj *entry, short type, CDILPipe *pipe,
long timeOut, CDILPipeCompletionProcPtr
callBack,long refCon);

Notice that the CDIL pipe is used here since this is the first time that data
will actually be transferred. Note also that the FDget routine may be called
asynchronously by passing a procedure pointer in for the fifth argument.

In both routines the first argument (entry) is the master object being
transferred. It may have sub-frames and arrays objects bound to it but this is
the top level object. The next argument (type) is the FDIL type
(kDILFrame or kDILArray) of this master object. The third
argument (pipe) is the CDIL pipe being used to transfer the data.

For FDget we have these additional arguments:
The fourth argument (timeOut) defines how long the FDIL should

attempt to transfer the object before giving up and returning an error. The
timeout value is measured in milliseconds on Windows machines and ticks
on Macintosh OS machines.

The next argument (callBack) is a pointer to a callback routine if
the FDget call is made asynchronously. If you are making the call
synchronously, simply pass NULL for this argument.

The last argument (refCon) is an arbitrary value which can be passed
to your completion routine.

SoupDrink downloads the previously defined entry FDIL object to the
Newton using this call to FDput:

FDput(entry, kDILFrame, ourPipe);

The Newton must be in a state to receive a frame or array before it is sent
from the desktop machine. See the SoupDrink code for the Newton for an
example of code which imports and exports frames.

Unbound Data
Unbound data is data which arrives at the desktop but is not bound to

any memory locations by calls to FDbindSlot(). This typically
occurs in two situations: when the desktop programmer does not know the
structure of the Newton data beforehand and when there are previously
unknown slots which have been added to a frame.

An example of the first case is a program which allows the programmer to
select what will be transferred. SoupDrink does this when it allows the
programmer to name a Newton soup which is to be uploaded. In this case
SoupDrink provides a universal way to handle all soups by uploading the
information as unbound data which it then writes to file.

The second situation occurs either when there is a system or program
update or when applications which “tag along” on system soups are added.
For example, if a new version of the Names application added new slots to
the soup frames stored for a Name card, SoupDrink would get the data from
the old slots if it used the entry definition shown above but would not have a
place allocated to put new data slots. Similarly, if a new contact application
was loaded into the Newton, it might choose to build off of the existing
Names application but add additional information to the soup entries. In this
case SoupDrink would get the standard data but would not be prepared for
the data added to the Names soup entries.

In either case, unbound data provides a way to accept unknown data slots
and then to parse them for further disposition. Following is a description of
unbound data and how to extract information about the data once it has
arrived at the desktop.

Unbound data is linked together in a chain of data structures of type
slotDefinition. The slotDefinition data type is defined
as follows:

typedef struct slotDefinition
{
short varType; // Data type of this variable
void *var; // Actual pointer to data
ulong length; // Length of data (strings)
ulong maxLength; // Maximum Length of data
ulong streamLen; // internal
ulong bufIndex; // internal
long namePrec; // internal
long classPrec; // internal
char *slotName; // Name of slot for this var
char *oClass; // class of this object
short slotType; // Data type of this slot
ulong truncSize; // Current size of truncated object
long childCnt; // Number of child nodes
long peerCnt; // Number of peer nodes
short dataFilled; // TRUE if data added in this op
long internalFlags; // Internal state flags
short boundData; // internal
struct slotDefinition *children;
struct slotDefinition *next;
} slotDefinition ;

The fields which are significant to understanding the structure of
unbound data are the childCnt, peerCnt, children and
next fields. Unbound data is stored as a series of linked
slotDefinition structures which may have siblings (peers) or
children. In this scheme, peerCnt is the number of peers an item has,
childCnt is the number of children, next is a pointer to the
slotDefinition for the next peer in the list and children is a
pointer to the start of the chain of slotDefinitions for the
children of the item.

This is shown in the following diagram:

October 1996 Newton Technology Journal

18

Newton Technology Journal October 1996

19

StringToNumber(“2”);
#4419331 2.00000
StringToNumber(“2.5”);
#44193ED 2.50000

We’ll use the Floor function, which rounds down a real number to an
integer, to fix our problem:

Floor(StringToNumber(“2”));
#8 2

Floor(StringToNumber(“2.5”));
#8 2

Let’s rewrite the buttonClickScript. We’d better keep in mind
that StringToNumbermight return nil if we pass in a non-numeric

SlotDefinition *FDGetUnboundList(DILObj *theFDILObj);
objErr FDFreeUnboundList(DILObj *theFDILObj,
SlotDefinition *list);

FDGetUnboundList returns a pointer to the list of items in the
top level (master frame) of the unbound data while
FDFreeUnboundList frees all the memory allocated for unbound
data when FDget is called and there is data uploaded which has not been
defined using FDbindSlot.

The use of unbound data may be summarized as follows:
Unbound data is the data received from the Newton after a call to

FDget returns slots which do not have a specified location in memory
connected to them. This may occur because the desktop programmer did
not know what the structure of the data would be or because additional data
was added to the frame being uploaded. Once transferred to the desktop
machine the data is put into a linked list of slotDefinition structures which
contain pointers to the next unbound item as well as items which are
children of the current item. The unbound list may be parsed and extensive
information about the slot associated with the item (including its type, name,
class, and the actual data associated with the item) may be extracted from its
slotDefinition structure.

The list of items of unbound data are kept in an array and the children
field in a slotDefinition is an array of child items. SoupDrink
uses this to parse the unbound data by looping through each of these arrays.
Both algorithms work since *children is equivalent to children[0] in C.

Destroying Objects and Closing the FDIL
When you are completely finished with an FDIL object, call

FDDisposeObject to destroy the object and all associated memory.
Note that calling FDDisposeObject does not deallocate memory
explicitly allocated by the desktop application. If memory is allocated off of
the heap and then bound to a slot in an object, FDDisposeObject
will not deallocate the heap memory. It must be explicitly deallocated.

Finally, the FDIL should be closed by calling FDDisposeFDIL. This
should be done before closing the CDIL.

The definition of these routines as follows:

objErr FDDisposeObject (DILObj *theObject);
objErr FDDiposeFDIL();

Here the slotDefinition structures are linked laterally by the next
field while the children field points to the start of the list of all of the item’s
children. They each have their own list of children which do not intersect.

A more concrete example of this structure is shown below for the
following simple frame:

foo:= {
bar:{none:nil, one:1},
snafu:{tarfu:2},
fubar: 3

}

Not shown in the second diagram is the var field which points to the
actual data associated with the slot. With the addition of this slot we now
have enough information to write the following pseudo-code for walking
through the unbound data list printing the data:

parselist(list)
begin

item:=list[0];
while (item != nil)
begin

if (item !=kDILFrame & item !=kDILArray)
output(item->var)

else
parselist(item->children)

item:=item->next
end

end

The only thing remaining is to find the start of the unbound data list and
dispose of the memory allocated by the FDIL for the unbound data. The
following routines do what is necessary:

continued from page 13

string (wonder what would happen if we called Floor with nil?):

func()
begin

local beeps :=
StringToNumber(numBeeps.entryLine.text);

if beeps then
for i := 1 to Floor(beeps) do

:SysBeep();
end

We rebuild, download, and rerun. We write in “2” in the input line and tap
the Beep button. Lo and behold, the Newton beeps (although it’s hard to tell
there are two beeps because the second beep starts before the first beep
finishes). Just to be thorough, we write in “two” in the input line and tap the
Beep button. Nothing happens, just as we desire.

Debugging Tutorial: Finding & Fixing Bugs in an Application

NTJ

NTJ

Newton Developer Programs
Apple offers three programs for Newton developers – the Newton Associates Program, the Newton
Associates Plus Program and the Newton Partners Program. The Newton Associates Program is a low
cost, self-help development program. The Newton Associates Plus Program provides for developers
who need a limited amount of code-level support and options. The Newton Partners Program is
designed for developers who need ujnlimited expert-level development. All programs provide focused
Newton development information and discounts on development hardware, software, and tools – all
of which can reduce your organization’s development time and costs.

Newton Associates
Program
This program is specially designed to provide low-cost,
self-help development resources to Newton developers.
Participants gain access to online technical information
and receive monthly mailings of essential Newton
development information. With the discounts that
participants receive on everything from development
hardware to training, many find that their annual fee is
recouped in the first few months of membership.

Self-Help Technical Support
• Online technical information and developer forums
• Access to Apple’s technical Q&A reference library
• Use of Apple’s Third-Party Compatibility Test Lab

Newton Developer Mailing
• Newton Technology Journal – six issues per year
• Newton Developer CD – four releases per year

which may include:
– Newton Sample Code
– Newton Q & A’s
– Newton System Software updates
– Marketing and business information

• Apple Directions – The Developer Business Report
• Newton Platform News & Information

Savings on Hardware, Tools, and Training
• Discounts on development-related Apple hardware
• Apple Newton development tool updates
• Discounted rates on Apple’s online service
• US $100 Newton development training discount

Other
• Developer Support Center Services
• Developer conference invitations
• Apple Developer University Catalog
• APDA Tools Catalog

Annual fees are $250.

Newton Partners
Program
This expert-level development support program helps
developers create products and services compatible
with Newton products. Newton Partners receive all
Newton Associates Program features, as well as
unlimited programming-level development support via
electronic mail, discounts on five additional Newton
development units, and participation in select
marketing opportunities.

With this program’s focused approach to the
delivery of Newton-specific information, the Newton
Partners Program, more than ever, can help keep
your projects on the fast track and reduce
development costs.

Unlimited Expert Newton Programming-level Support
• One-to-one technical support via e-mail

Apple Newton Hardware
• Discounts on five additional Newton development

units

Pre-release Hardware and Software
• Consideration as a test site for pre-release Newton

products

Marketing Activities
• Participation in select Apple-sponsored marketing

and PR activities

All Newton Associates Program Features:
• Developer Support Center Services
• Self-help technical support
• Newton Developer mailing
• Savings on hardware, tools, and training

Annual fees are $1500.

New: Newton Associates
Plus Program
This new program now offers a new option to
developers who need more than self-help information,
but less than unlimited technical support. Developers
receive all of the same self-help features of the Newton
Associates Program, plus the option of submitting up
to 10 development code-level questions to the Newton
Systems Group DTS team via e-mail.

Newton Associates Plus Program Features:
• All of the features of the Newton Associates

Program
• Up to 10 code-level questions via e-mail

Annual fees are $500.

For Information on All
Apple Developer Programs
Call the Developer Support Center for
information or an application. Developers
outside the United States and Canada
should contact their local Apple office for
information about local programs.

Developer Support Center
at (408) 974-4897
Apple Computer, Inc.
1 Infinite Loop, M/S 303-1P
Cupertino, CA 95014-6299

AppleLink: DEVSUPPORT

Internet: devsupport@applelink.apple.com

