§/52/96
CHAPTER 1

ROM Board Designer’s Guide

This chapter provides you with the information that you need to design a ROM board
for the N2, to either -provide additional functionality to the Newton OS, using ROM
extensions or to add additional FLASH devices to increase user storage. Both the
hardware and firmware design considerations are described in detail.

Newton OS ROM Extension Overview

* The N2's logical ROM consists of a Base ROM image and up to four ROM extensions.The
Base ROM image and the four ROM extensions do not correspond to a physical devices,
but logical partions that can span multiple physical ROM devices. A single physical
ROM device may contain several logical ROM extensions, and a single logical ROM - -
extension may span multiple physical devices.

The Base ROM contains the basic N2 Operating system. ROM extensions (REXs) are

. binary blocks that can contain packages; device drivers, diagnostics, and other .
configuration information. The Apple-supplied ROM extension contains the standard N2
applications, device drivers, diagnostic code, and configuration information. You can
add up to three additional ROM extensions of your own.

Through the use of REXs, you can add or replace configuration information and
diagnostics present in the Apple ROM image. You can also add additional device
drivers and built-in applications.

REX Scanning

The Newton OS scans for REXs in the physical address space. The first place that the
Newton OS checks is the physical address immediately following the end of base ROM
image. This is the location where the Newton OS expects to find the Apple REX. Once
the Apple REX is found, the Newton OS then begins the search for Licensee REXSs. The
first location searched is the physical location immediately following the Appple REX.

Newton OS ROM Extension Overview 1-5
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

CHAPTER 1

ROM Board Designer’s Guide

The Newton OS will continue to search at the physical address location after each found
REX until no more REXs are found.

If the last address location where a valid REX was found offset by the size of that REX is
less than ROM_CS_0 + 0x800000, then the Newton OS will begin to search for additional
REXs at ROM_CS_0 + 0x800000. If a valid REX is found at that location, the Newton OS
will continue to search at the physical address location immediately after each found
REX until no more REXs are found. .

The next location the Newton OS scans for REXs is at ROM_CS_1. If a valid REX is
found at that location, the Newton OS will continue to search at the physical address
location immediately after each found REX until no more REXs are found.

If the last address location where a valid REX was found offset by the size of that REX is
less than ROM_CS_1 + 0x800000, then the Newton OS will begin to search for additional
REXs at ROM_CS_1 + 0x800000.

If more than 4 REXs were found during the scan, the Newton OS will generate a fatal
error and won't boot. '

The process is shown in Figure 6-1.

Newton OS ROM Extension Overview
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

CHAPTER 1

ROM Board Designer’s Guide

Figure 1-1

REX Scan Process

OS begins searching
for REXs here

If address is less
than 8MB, OS

searches here ‘

N

OS sets address
to current address
+ 8MB - (x MOD 8MB)

B |

:

OS quits searching

N2 Memory

Apple ROM Image

Addr x

REX here?

No

Yes

REX here?

No

Yes

REX here?

Yes

REX here?

Yes

<
<
<

IOSPACE
(ROM_CS_1)

REX here?

Yes

REX here?

Yes

REX here?

Yes

REX here?

Yes

IOSPACE
(XXXXXXXX)

REX here?

REX here?

REX here?

Yes

REX here?

Yes

Addr x+

Yes :5/

OS has found four REXs

| >4 and quits searching

3

If the fourth REX has been found,
the OS quits searching

Newton OS ROM Extension Overview
Draft. Preliminary, Confidential. ©1896 Apple Computer, Inc. 7/25/96

1-7

CHAPTER 1

ROM Board Designer’s Guide

Newton OS ROM_CS_1 Flash Memory Overview

If the address location selected by ROM_CS_1 is not needed for the permanent storage of
REXs, it can be used to select additional FLASH devices to be used as User Storage. The
Newton OS currently does not support both FLASH devices as User Storage and ROM
devices for REX storage in ROM_CS_1 space. Therefore, once a valid REX is found in
ROM_CS_1 space, the Newton OS will not scan for FLASH to be used as additional
User Storage. This permits the use of FLASH devices as ROM during development or
product shipment.

Hardware Design

1-8

This section describes how to design and interface a ROM card to the N2's ROM socket.
Signal descriptions, Signal locations andSignal timing'is provided.

Additional REX Support

If you add additional REXs, with different physical ROM dev1ces, extra address |
decoding may be necessary to support them. The following subsections explain how to
add devices.

Selecting the Device Location

Additional Physical ROM using ROM CS_0

I the amount of ROM that the Newton OS that you have licensed fits in 8 Mbytes or

less, you can add additional chipselect decode logic to select the physical ROM devices
containing your REXs. This additional decode logic should ensure that the Apple ROM
devices are only selected when ROM_CS_0 is asserted and the address presented on the
address bus is in the range between 0 and 0x7FFFFF.

Additionally, the added ROM devices containing your REXs must be 32 bits in width
and must only be selected when ROM_CS_0 is asserted and the address presented on the
address bus is in the range between 0x800000 and OxFFFFFE.

Timing should be recalculated to ensure that the modified timing parameters with the
addition of the new chipselect logic meet the specifications of the Apple ROM devices.

Timing for the entire bank of devices selected by ROM_CS_0 must be the same. This
requires that additional ROM devices that are added must meet or exceed the same
timing parameters as the Apple Newton OS ROMs. If slower devices are selected, all
devices must be run at the slower speed,which could adversely affect system
performance. The Figure 2 shows the addtitional functional logic required to place the
new ROM devices in the ROM_CS_0 bank. '

Hardware Design
Draft. Preliminary, Confidential. ©1996 Appie Computer, Inc. 7/25/86

CHAPTER 1

ROM Board Designer's Guide

Additional Physical ROM using ROM_CS_1

If you wish to use additional devices, ROM_CS_1 can be used to select the devices. The
bank of devices must be 32 bits in width. The timing for the bank of ROM selected by
ROM_CS_1 is independent from timing of the devices selected by ROM_CS_0, allowing
for devices with differnent timing requirements than the Apple ROM's containing the
Newton OS. Selecting this location for ROM prevents increasing additional User Storage
using the ROM board. The Figure 3 shows the block diagram for this confighration.

Manufacturing a single ROM device

If the Newton OS image that you have licensed and the REX that you generated will fit
into a single bank of devices, you can combine the files and manufacture a single set of
ROM devices. This bank must be 32 bits in width.

Using this method, you must obtain the Apple OS image and Apple REX. The Figure 4
shows the block diagram for this configuration.

ROM Access Cycles

All ROM devices selected by ROM_CS_0 and ROM_CS_1 are controlled by the CPU
bus. Devices selected by ROM_CS_0 have the capability to support single transactions -
and burst transactions. ROM_CS_1 space only supports single transactions, and does
not support burst transactions. ROM_CS_1 also has a external ready line that can
beused to dynamically insert waitstates into access cycles. : S

All accesses begin with a valid address followed by a valid ROM_CS_x signal. The
address setup time to ROM_CS_x is programmable in system clock increments.
Accesses to ROM_CS_0 space can be programmed to be read only. In this mode, the

. ROM_IO_RD and ROM_IO_WR signals will not be generated and all accesses are
assumed to be Read accesses.

ROM_CS_1 space accesses will always assert either ROM_IO_RD or ROM_IO_WR
signals, depending on the access type. Read and Write cycles are differentiated by the
signals ROM_IO_WR and ROM_IO_RD. ROM_IO_RD asserted low signifies a Read
transaction and ROM_IO_WR asserted low signifies a Write transaction.

Although ROM_CS_1 space can not be programmed to be read only, ROM_IO_WR
should never occur if a valid REX has been found in ROM_CS_1 space.

Single Read Transaction

During a single transaction read cycle, a valid address is placed on Addr_24-Addr_2 and
the Strong ARM will assert nMREQ. This means the next falling edge of MCLK will bea
sequential cycle. Alltiming is programmable from this falling edge. A programmable -
number of FCLK cycles from the start of the sequential cycle ROM_CS_x is asserted.This
parameter is tAC. If ROM_CS_0 is selected. If Writable ROMs is configured or
ROM_CS_1 is selected, ROM_IO_RD is asserted a programmable number of FCLK
cycles after the start of the sequential cycle. This parameter tASR. Data is returned by
the ROM devices a programmable number of FCLK cycles after the start of the Strong

Hardware Design 1-9
Dratft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7125/96

1-10

CHAPTER 1

ROM Board Designer's Guide

ARM sequential cycle and is placed on the bus and the cycle terminates. This parameter
is tCYC. The figure below shows the timing for a single transaction read. The Strong
Arm and digital system Asic signals and timing parameters are shown to help the
reader understand the transaction. However, these signals are not available at the ROM
Board Connector.

Burst Read Transactions

The ROM_CS_0 bank can also be programmed to support burst read transactions. Read
burst transactions occur when the Strong Arm CPU is performing a cache line fill. All
other reads will be single read transactions.

A Burst Read Transaction begins like a single read transaction: a valid address is placed
on Addr_24-Addr_2 and ROM_CS_0 is asserted a programmable number of FCLK
cycles from the begining of the first sequential cycle. The number of FCLKs before
ROM_CS_0 is asserted is tAC, the same programmable number of FCLK cycles as the
single Single Read Transaction. If Writable ROMs are selected, ROM_IO_RD is asserted
a programmable number of clocks after the start of the first sequential cycle. The
number of FCLK cycles before ROM_IO_RD is asserted is tASR, the same programmable
number of FCLK cycles as as the single Read Transaction. The first data item must be
placed on the bus a number of programmable FCLK cycles after the start of the first
sequential cycle. This parameter is tCYC, the same number of FCLK cycles as the single
Read Transaction.

ROM_CS_0 will then remain asserted. The address will be incremented by 4 and will be
placed on Addr_24-Addr_2. Because the lower address bits are not visible of the ROM
Board connector, the address will appear to increment by 1. The next data item will be
sampled a programmable number of clocks from the falling edge of MCLK that sampled
the data item from the last data sampling. This parameter is called tPAC.

Because a cache line fill is 8 words long, there will be 7 tPAC cycles that follow the first
data item sampling. The timing for the Read Burst transaction is shown in the figure
below.

CALCULATING AND CHANGING TIMING

The Digital System ASIC allows complete flexibilty in changing device timing
parameters to accomodate different devices. Timing equations are show in the above
timing diagrams (need pointer. do you mean chapter 1?). The following timing
parameters can be programmed as multiples of Fclk. All default register parameters can
be modified with the REX configuration block entry. ROM_CS_0 is configured
differently than ROM_CS_1 space and both entries are shown below:

Hardware Design
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

CHAPTER 1

ROM Board Designer's Guide

ROM_CS_0 Configuration Long Word
This section describes the fields in the ROM_CS_0 configuration long word.

Bit Field Description

Bits 31:16 Reserved Set to TBD

Bit 14 Burst Enable Determines if Burst Cycles are to be enabled.
1 - Enable Burst Cycles for ROM_CS_0

0 - Disable Burst Cycles for ROM_CS5_0

Bits 13:12 tPAC The number of FCLK cycles from the
sampling edge of MCLK until the next
sampling edge of MCLK during a Read
burst cycle.

00 - 5 Clocks
01 - 2 Clocks
10 - 3 Clocks
11 - 4 Clocks

Bits 11:10 tASR Number of FCLK cycles from the start of a
Sequential Cycle until ROM_IO_RD is
asserted.

00 - 0 Clocks
01- 1 Clock

10 - 2 Clocks
11 - 3 Clocks

Bits 9:8 tASW . The number of FCLK cycles from the start of
: a sequential cycle before ROM_IO_WR is
asserted.

00 - 0 Clocks
01 - 1 Clock
10 - 2 Clocks
11 - 3 Clocks
Bit7 Reserved Set to TBD

Bit 6 Enable RW Enables the IORD and IOWR strobes during
ROM accesses to ROM_CS_0 space

Bits 5:4 tAC The number of FCLK cycles from the start of
the sequential cycle before ROM_CS_0 is
asserted.

00 - 0 Clocks
01 -1 Clock

10 - 2 Clocks
11 - 3 Clocks

Hardware Design 1-11
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

1-12

CHAPTER 1

ROM Board Designer’s Guide

Bit

Field

Description

Bits 3:0

tCYC

The number of FCLK cycles from the start of
the sequential cycle until the sampling edge
of MCLK during a single Read Transaction or
the first sequential access during a burst
cycle.

0000 - 16 Clocks
0001 - 1 Clock
0010 - 2 Clocks
0011- 3 Clocks
0100 - 4 Clocks
0101 - 5 Clocks
0110 - 6 Clocks
0111 - 7 Clocks
1000 - 8 Clocks
1001 - 9 Clocks
1010 - 10 Clocks
1011 - 11 Clocks
1100 - 12 Clocks
1101 - 13 Clocks
1110 - 14 Clocks
1111 - 15 Clocks

ROM_CS_0 Bank Default Timing

The Newton OS configures the ROM_CS_0 timing with the following values for the

above parameters: Burst Enable = TBD

s tPAC=TBD
8 tASR=TBD
s tASW =TBD
tAC =TBD

m tCYC =TBD

ROM_CS_1 Configuration Bits

This section describes the fields in the ROM_CS_0 configuration long word.

Hardware Design

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

CHAPTER 1

ROM Board Designer's Guide

BIT Field Description

Bits 31:14 Reserved Set to TBD

Bits 13:12 tASR Number of FCLK cycles from the start of a
Sequential Cycle until ROM_IO_RD is
asserted.

00 - 0 Clocks
01-1 Clock

10 - 2 Clocks
11 - 3 Clocks

Bits 11:10 tASW The number of FCLK cycles from the start of
a sequential cycle before ROM_IO_WR is
asserted.

00 - 0 Clocks
01-1 Clock
10 - 2 Clocks
11 - 3 Clocks
Bits 9:6 Reserved Set to TBD

Bits 5:4 tAC The number of FCLK cycles from the start of
the sequential cycle before ROM_CS_0 is
asserted.

00 - 0 Clocks
01 -1 Clock

10 - 2 Clocks
11 - 3 Clocks

Bits 3:0 tCYC The number of FCLK cycles from the start of

~ the sequential cycle until the sampling edge
of MCLK during a single Read or Write
Transaction.

0000 - 17 Clocks
0001 - 2 Clock
0010 - 3 Clocks
0011- 4 Clocks
0100 - 5 Clocks
0101 - 6 Clocks
0110 - 7 Clocks
0111 - 8 Clocks
1000 - 9 Clocks
1001 - 10 Clocks
1010 - 11 Clocks

Hardware Design 1-13
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

CHAPTER 1

ROM Board Designer's Guide

BIT Field Description
1011 - 12 Clocks

1100 - 13 Clocks
1101 - 14 Clocks
1110 - 15 Clocks
1111 - 16 Clocks’

ROM_CS_1 Bank Default Timing

The Newton OS configures the ROM_CS_1 timing with the following values for the
above parameters:

Additional User Storage Support

This gection describes adding additional FLASH devices for user storage.

Flash Location

Any FLASH devices added for User Storage, must be placed in the address locations
decoded by ROM_CS_1. The memory locations selected by ROM_CS_1 require a 32 bit
data path.

Device Requirements

Additionally, the Newton OS supports only Intel Compatible 28f016sa devices for
Additional User Storage. These devices can be used in either 8 bitor 16 bit mode. When
the FLASH devices are used in 16bit mode, two devices are required, providing an
increase of 4 Megabytes of User Storage. When the FLASH devices are used in 8 bit
mode, four devices are required, providing an increase of 8 Megabytes of User Storage.

Timing
The Newton OS default timing for the ROM_CS_1 signal allows for the following timing:

1-14 Hardware Design
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

CHAPTER 1

ROM Board Designers Guide

Electrical Specifications

Power Requirements

The ROM Card shares power supplies with other add-on devices in the N2 system, so
the total power requirement for the entire system should be calculated. Thé ROM slot
uses three power supplies: a 3.3V Digital Supply, a 5V Digital Supply and a 12V Digital
Power supply. The amount of power used by each device in the system must be
deducted from the total power-available to ensure proper operation.

The 3.3V Power Supply Budget

The 3.3V Digital power supply can source a total of 700ma. This supply provides power
to the digital circuitry on the Main Logic Board, to the two PCMCIA slots, as well as to .
the ROM card. The Main Logic Board uses approximately 100ma, so the ROM card:
must share the remaining 600ma with the two PCMCIA slots.

The 5.0V Power Supply Budget

The 5.0 Digital power supply can source a total of TBD ma. This supply provides power
to the TBD.

The 12V Power Supply Budget

The 12Volt power supply can source a total of 65ma. In addition to the ROM card slot,
this supply provides power to the Main Logic Board for Flash writes, to the Backlight, -

" and to the two PCMCIA slots. The Main Logic Board uses approximately 5ma, and the:
Backlight requires 10ma. The remaining 50ma are shared between the ROM card and the
two PCMCIA slots.

Power Specifications

This section specifies the DC operating conditions of the Power Sources to the ROM
Board.

Supply Min Voltage Maximum Voltage |
DVCC 3.3V -5% 3.3V + 10%
D5VCC 5.0-10% 5.0 +10%
D12vVCC 12.0-5% 12.0 + 5%

ROM Board Signal Descriptions

The signal descriptions are listed in the following tables. The I/O direction is referenced
from the ROM Board’s view. A “O” specifies that the signal is a output from the card. A
“I” specifies that the signal is a input into the card. A “B” specifies that the signal is Bi
Directional.

Hardware Design 1-15
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

1-16

CHAPTER 1

ROM Board Designer’s Guide

Control Signals

Signal Name Pin Vo Description

ROM_IO_RDY 1 O This signal is used to add wait states to
the access cycle of the ROM.

ROM_IO_INT 3 o Interrupt Signal

ROM_CS_0 5 I ROM Bank Chip Select 0

ROM_CS_1 7 I ROM Bank Chip Select 1

RESET 23 I Reset

ROM_IO_RD 40 I ROM READ

ROM_IO_WR 41 I ROM WRITE

PowerEnable 72 I This signal is asserted ????

Clock Signals

Signal Name Pin 10 Description

SCLK 5 I 3.68 Mhz Clock

Hardware Design

Dratft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

CHAPTER 1

ROM Board Designer's Guide

Address Signals

Signal Name Pin 10 Description
Addr_2 9 I Address line 2
Addr_3 11 I Address line 3
Addr_4 13 I Address line 4
Addr_5 15 I Address line 5
Addr_6 25 I Address line 6
Addr_7 27 I Address line 7
Addr_8 29 I Address line 8
Addr_9 31 I Address line 9
Addr_10 33 I Address line 10
Addr_11 37 I Address line 11
Addr_12 43 I Address line 12
Addr_13 45 I Address line 13
Addr_14 47 I Address line 14
Addr_15 49 I Address line 15
Addr_16 51 I Address line 16
Addr_17 59 I Address line 17
Addr_18 61 I Address line 18
Addr_19 63 I Address line 19
Addr_20 65 I Address line 20
Addr_21 67 I Address line 21
Addr_22 69 I Address line 22
Addr_23 71 I Address line 23
Addr_24 47 I Address line 24
Data Signals

Signal Name Pin 10 Description
Data_0 2 B Data bit0
Data_1 4 B Data bit 1
Data_2 6 B Data bit 2
Data_3 - 8 B Data bit 3
Data_4 10 B Data bit 4
Data_5 12 B Data bit 5
Data_6 14 B Data bit 6
Data_7 16 B Data bit 7
Data_8 20 B Data bit 8
Hardware Design 1-17

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/86

1-18

CHAPTER 1

ROM Board Designer's Guide
Signal Name Pin {o] Description
Data_9 22 B Data bit 9
Data_10 24 B Data bit 10
Data_11 26 B Data bit 11
Data_12 28 B Data bit 12
Data_13 30 B Data bit 13
Data_14 32 B Data bit 14
Data_15 34 B Data bit 15
Data_16 38 B Data bit 16
Data_17 40 B Data bit 17
Data_18 42 B Data bit 18
Data_19 44 B Data bit 19
Data_20 46 B Data bit 20
Data_21 48 B Data bit 21
Data_22 50 B Data bit 22
Data_23 52 B Data bit 23
Data_24 56 B Data bit 24
Data_25 58 B Data bit 25
Data_26 60 B Data bit 26
Data_27 62 B Data bit 27
Data_28 64 B Data bit 28
Data_29 66 B Data bit 29
Data_30 68 B Data bit 30
Data_31 70 B Data bit 31
Power & Gnd
Signal Name Pin 10 Description
DVCC 17 1 Digital 3.3 Volt,
VCC Supply
DVCC © 35 I Digital 3.3 Volt
VCC Supply
DVCC 53 I Digital 3.3 Volt
VCC Supply
D5VCC 19 I Digital 5 Volt
Supply
D12VCC 21 I 12 Volt VCC

Hardware Design

Draft. Preliminary, Confidential. ©1996 Apple Computer, inc. 7/25/96

CHAPTER 1

ROM Board Designer’s Guide

Slgnal Name Pin 10 Description
DGND 18 O Digital Ground
DGND 36 O Digital Ground
DGND 54) Digital Ground

ROM SIMM Connector Pinout

Pin Description
1 ROM IO RDY
2 Data_0
3 ROMIO INT
4 Data_1
5 ~ROM_CS_0
6 Data_2
7 ~ROM_CS_1
8 Data_3
9 Addr_2
10 Data_4
1 Addr_3
12 Data_5
13 Addr_4
14 Data_6
15 Addr_5
16 Data_7
17 DVCC
18 DGND
19 D5VCC
20 Data_8
21 D12VCC
22 Data_9
23 ~Reset
24 Data_10
25 Addr_é6
26 Data_11
27 Addr_7
28 Data_12

Hardware Design

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

1-19

1-20

CHAPTER 1

ROM Board Designer's Guide

Pin Description
29 Addr_8
30 Data_13
31 Addr_9
32 Data_14
33 Addr_10
34 Data_15
35 DVCC
36 DGND
37 Addr_11
38 Data_16
39 ROM_IO_RD
40 Data_17
41 ROM_IO_WR
42 Data_18
43 Addr_12
44 Data_19
45 Addr_13
46 Data_20
47 Addr_14
48 Data_21
49 Addr_15
50 Data_22
51 Addr_16
52 Data_23
53 DVCC
54 DGND
55 SCLK

56 Data_24
57 Addr_24
58 Data_25
59 Addr_17
60 Data_26
61 Addr_18
62 Data_27
63 Addr_19
64 Data_28

Hardware Design
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

CHAPTER 1

ROM Board Designer’s Guide .

Pin Description
65 Addr_20

66 Data_29

67 Addr_21

68 Data_30

69 Addr_22

70 Data_31

71 Addr_23

72 PowerEnable

DC Absolute Maximum Ratings

Address and Data

Signal

I/0 Voltage
MinMaxUnits
Data_31-Data_0DVGND - 0.5DGND + 3.6 Volts

Control Signals

Signall/O Voltage
MinMaxUnits
ROM_IO_RDYTBDTBDVolts
ROM_IO_INTTBDTBDVolts

DC Signal Operating Voltages

Address and Data

Signallnput High VoltageInput Low Voltage
MinMaxMinMaxUnits
Data_31-Data_0.9*DVCCDVCC0.0.1*DVCCVolts

SignalOutput High VoltageOutput Low Voltage
MinMaxMinMaxUnits
Addr_24-Addr_2.8DVCCDVCC0.0.2*DVCCVolts
Data_31-Data_0.8DVCCDVCC0.0.2*DVCCVolts

Hardware Design
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

1-21

1-22

CHAPTER 1

ROM Board Designer's Guide

Control Signals

Signallnput High VoltageInput Low Voltage
MinMaxMinMaxUnits
ROM_IO_RDYTBDTBDTBDTBDVolts
ROM_IO_INTTBDTBDTBDTBDVolts

SignalOutput High VoltageOutput Low Voltage
MinMaxMinMaxUnits
ROM_CS_0TBDTBDTBDTBDVoits
ROM_CS_1TBDTBDTBDTBDVolts
RESETTBDTBDTBDTBDVolts
ROM_IO_RDTBDTBDTBDTBDVolts
ROM_IO_WRTBDTBDTBDTBDVolts
PowerEnableTBDTBDTBDTBDVolts

Clock Signals

SignalOutput High VoltageOutput Low Voltage
MinMaxMinMaxUnits
SCLKTBDTBDTBDTBDVolts

DC Characteristics

Loading Specifications

This section specifies the amount of capacitive load that the is present on Output signals
from the board. This section also specifies the maximum capacitive loading that can be
present on Input signals to the Rom Board to ensure that the timing will be met. Both
specifications are listed for Bidirectional signals.

Address and Data

Addr_24- Addr_2150pf - (Milton - Connector
Data_31-Data_0B50pf - (Milton - Connector (Output)
5pf + Milton Connector(Input)

Control Signals

ROM_IO_RDYO10pf + Milton Connector
ROM_IO_INTO10pf + Milton Connector
ROM_CS_0I50pf - (Milton Connector
ROM_CS_1150pf- (Milton Connector
RESETI

ROM_IO_RDI 50pf - (Milton Connector

Hardware Design
Dratft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

CHAPTER 1

ROM Board Designer's Guide

ROM_IO_WRI 50pf - (Milton Connector
PowerEnablel

Clock Signals
SCLKI

Output Current Current .
This section specifies the output current supplied from the drivers of the signals from the
Main Logic Board into the ROM Board.

Address and Data
Signal NameOutput high CurrentOutput Low CurrentUnits

Addr_24- Addr 2TBDTBDmA
Data_31-Data_0TBDTBDmA

Control Signals
$Signal NameOutput-high CurrentOutput Low CurrentUnits

ROM_CS_0TBDTBD mA
ROM_CS_1TBDTBDmA
RESETTBDTBDmA
ROM_IO_RDTBDTBDmA
ROM_IO_WRTBDTBDmA
PowerEnableTBDTBDmA

Clock Signals
Signal NameOQutput high CurrentOutput Low Current

SCLKTBDTBDmA
MECHANICAL SPECIFICATIONS
This section provides mechanical requirements for the design of the Rom Board.

ROM Board Mechanical Drawing

This section provides information of the Mechanical specifications for the ROM Board.
The specifications provided assume that the card will be placed into a completed N2
system. Some of the dimmensions may change if the card is to be placed in a unit with a
different enclosure case.

ROM Board Mechanical Receptical Specification
The receptical used on the N2 device is manufactured by AMP. Please refer to
specification #xxxx-xxxxx-xxxxx for further information on the receptical.

Hardware Design 1-23
Dratft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

1-24

CHAPTER 1

ROM Board Designer's Guide

Newton ROM Configuration

The Newton ROM consists of a base ROM and from one to four ROM extensions. The
BASE ROM contains the ROM code for the base Newton Operating System. Apple
supplies a ROM extension that contains the standard Newton applications, device
drivers, diagnostic boot code, and RAM allocation information.

You can replace all or part of the Apple ROM extension, and you can also add up to three
additional ROM extensions.

This document describes the use, construction, organization and contents of these ROM
extensions.

Terminology

Base ROMThe basic Newton system (always present)

ROM ExtensionsBinary blocks that contain packages, diagnostics, and other
information.

RexTool for creating ROM extensions.

DumpRex A tool for Dumping the Contents of a REX.

Overview

The generic Newton platform device consists of one base ROM, provided by Apple, and
up to four extension blocks. :

These extension blocks can contain:

eone or more packages

eone diagnostics code block

*one or more raw blocks

*a RAM allocation table

The only required piece is a RAM allocation table.

Each ROM extension must have a ID field, which is used to determine precedence. The
four possible ROM extension blocks have ID numbers 0, 1,2, and 3. Extension ID 3 has
the highest precedence, while extension ID 0 has the lowest.

Apple supplies an extension with ID 0 that contains packages with the standard Newton
applications (calendar, names, and so on), the standard Newton diagnostic code, and the
standard RAM allocation table. You can replace this extension block entirely, replace
parts of it, or supersede parts of it by giving replacement‘information in an extension
with a higher ID number.

How the Newton OS Finds Extensions

The Rex Scanning Algorythm is described in the section above. (GREG- You may want
to reformat the above section and add the Scanning Section here to make it flow better.

Your Call.)

The Parts of a ROM Extension

Hardware Design
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

CHAPTER 1

ROM Board Designer's Guide

A ROM extension can contain any or all of the parts in the following sections.
ROM Extension Header
A ROM extension header looks like this:

struct RExHeader {
ULong signatureA;
ULong signatureB;
ULong checksum;
ULong headerVersion;
ULong manufacturer;
Fixed version;
ULong length;
ULong id;
VAddr start;
ULong count;
ConfigEntry table[1];// really “count" entries

L

signatureA The long value 'RExB'.

signatureB The long value 'lock’.

checksum A checksum for the extension starting with the headerVersion field and .
extending to the end of the extension. This has the value OXFFFFFFFF is there is no
checksum.

headerVersionA simple long whose value describe the format of the header. This allows
Apple to change the header layout in the future. The one shown in this section is
headerVersion 1.

manufacturer and version Used by the patching code in the same way they are used for
the base ROM.

length The size in bytes of this extension including the header.

idThe ROM extension identifier, used to distinguish each ROM extension. The id is used
both as a precedence value, and to associate patch tables and magic pointer tables to
specific virtual address slots. All REX’s must have unique Id’s. See the patching sections
later in this document for more information.

startThis gives the ROM extension’s Virtual Addréss.

countThe number of configuration entry tuples immediately following.

ConfigEntry A struct of the form:
struct ConfigEntry {

ULong tag;

ULong offset;

ULong length;

Y

Hardware Design 1-25
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96 ’

1-26

CHAPTER 1

ROM Board Designer's Guide

It consists of a configuration entry, containing a tag, an offset, and a length. The tag
identifies what kind of configuration block can be found at the specified offset. (There
may be additional types of configuration blocks in the future.) The length is the length of
that configuration block. All configuration blocks must start on a longword boundary.

Newton OS Supported Configuration Blocks

This section describes the Configuration Blocks that are currently recognized by the
Newton Operating System that can be included in a Licensee REX. This list does not
contain all values currently supported by the OS. Only Configuration Blocks that may
be added to Licensee REXs.

Ram Allocation Configuration Block.

This is used by the system to divide RAM among various system resources. RAM
Allocation Configuration Entries are identified by the Configuration Entry Tag:

const ULong kRAMAllocationTag = (ULong) ‘ralc’;

The Apple ROM extension supplies a default table, so if you don’t replace ROM
extension 0, you can use the default table.

The RAM allocation structures look like the following.

const ULong kRAMAIllocTableVersion = 1;
struct RAMAIllocEntry {
ULong min;

ULong max;

ULong pct;

L

struct RAMAllocTable {
ULong version;

ULong count; // Must =3
RAMAIllocEntry table(3];
I

The current Newton OS supports three entries. These entries represent:
1.RAM user store .

2.Frames heap :

3.ROM Domain Manager working set

For each entry, the OS computes the amount of RAM to give out by multiplying the total
system RAM by the pct field. It then forces the result to be at least min bytes. (If min is
zero this step is skipped.) It then forces the result to be no more than max bytes. If max is
zero this step is skipped.) The result is given to the client as the amount of space in bytes
to allocate. Only a small number of configurations are supported. These values will be
described at a later date.

Hardware Design
Draft. Preliminary, Confidential. ©1996 Apple Computer, inc. 7/25/96

CHAPTER 1

ROM Board Designer's Guide

Package Lists

Each ROM extension may contain a list of packages. Package List Configuration Entries
are identified by the Configuration Entry Tag:

const Ulong kPackageListTag = (Ulong) 'pkgl’;

Each package follows the previous package immediately (that is, there are ho alignment
restrictions). The OS looks for new packages until it reaches the end of a package and it
isn’t followed by a valid package header, or it has reached the end of the package list
block.

All places in the system that scan the package list automatically scan all the ROM
extensions for packages. Two or more packages can have the same name, but only one
package with a given name is loaded. The loaded package is the one found in the ROM
extension with the highest ID. That is, if a Names package is found in ROM extension 0
and another Names package is found in ROM extension 3, the Names package from
ROM extension 3 is loaded. This-allows you to, for example, replace standard
applications without modifying the Apple ROM extension.

Diagnostic Code

Each ROM Extension may contain one Diagnostic Routine. A Diagnostic Routine
Configuration Entry is identified by the Configuration Entry Tag:

const Ulong kDiagnosticsTag = (Ulong) 'diag’; -

Diagnostic code is C/C++ code linked to its actual physical address. The top of the code
must be the entry point into a single routine.. The OS jumps into this routine on cold-
booting. Note that the MMU has not been enabled at that time so the diagnostic code - -
must be linked. to its actual physical address, and the OS has not sized or otherwise
configured RAM so the diagnostic code must run without RAM. The routine should
return immediately if diagnostic mode is disabled (a condition the diagnostic code must
somehow determine without using RAM or the MMU). Otherwise, the diagnostic code
can do as it pleases (including setting up RAM or MMU code).

There can be more than one diagnostic block, but the OS invokes only the one found in
the ROM extension with the highest ID. That is, if a diagnostic block is found in ROM
extension 0 and another diagnostic block is found in ROM extension 3, the diagnostic
block from ROM extension 3 is loaded. This allows you to, for example, replace the
standard diagnostic block without modifying the Apple ROM extension.

You build a diagnostic block using the Diagnostic DDK. See the documentation for the
Diagnostic DDK for more information.

Raw Blocks

Hardware Design 1-27
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

1-28

CHAPTER 1

ROM Board Designer's Guide

A raw block contains licensee-specific data. The OS does not attempt to use or interpret
the contents of a raw block. If any Raw Blocks are to be used, Licensing Support needs
to ensure that the tag value is not used by any other system resource.

API Description

Here are descriptions of the ROM routines you can use in your code.

ROM Routines

These are all declared in VirtualMemory.h. The layout for ROM extensions is in
ROMExtensions.h.

VAddr GetPackageList(ULong id);

Returns a VAddr of the package list contained in the id'th ROM extension, or nil if there
is none available (package list or id'th ROM extension).

VAddr GetRExConfigEntry(ULong id, ULong tag, ULong* length);

Returns the pointer to the specified ROM extension configuration block, or nil if there is
none (configuration block or ROM extension). length is set to the length or the block, or
zero.

VAddr GetLastRExConfigEntry(ULong tag, ULong* length);

Returns the pointer to the last specified ROM extension configuration block, or nil if
there is none. length is set to the length or the block, or zero. The last block is defined as
the configuration block residing in the ROM extension block with the highest ID.
RExHeader* GetRExPtr(ULong id);

Returns a pointer to the id'th ROM extension’s header, or nil if there is none.

DumpRex

DumpRex is a MPW tool that dumps the header information of a REX. The tool takes as
input a REX file and dumps the header file contents in ASCII readable format to stdout.

DumpRex Command Line Syntax
Here is the command-line syntax.

DumpRex [Rex-File]
Rex-FileSet the name of the REX file that you wish to display the header information.

Sample Output
Shown below is a sample of the output from Dumping a Sample Apple REX is shown

below.

Hardware Design
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

CHAPTER 1

ROM Board Designer’s Guide

DumpREx of "mac Drive:English:Senior CirrusNoDebug high"
signature: 'RExBlock' (0x524578420x6C6F636B)

checksum: 0xCDDS5 (unverified)

hdrVersion: 1

manufacturer: 0x1000000

version: 0x20000

length: 821524 (0xC8914)

id: 0

start: 0x703978

count: 9

tag 'dio ', addr 0x703A0C, length 584, offset 148

tag 'gpio’, addr 0x703C54, length 648, offset 732

tag 'ralc’, addr 0x703EDC, length 44, offset 1380

tag 'pkgl’, addr 0x703F08, length 814760, offset 1424
tag 'pad ', addr 0x7CADBO, length 592, offset 816184
tag 'ptpt’, addr 0x7CB000, length 1024, offset 816776
tag 'glpt’, addr 0x7CB400, length 1024, offset 817800
tag 'pad ', addr 0x7CB800, length 2048, offset 818824
tag 'fexp', addr 0x7CCO000, length 652, offset 820872

Rex

Rex is a MPW tool used to build ROM extensions. Most of its input is specified in the
configuration file that may be provided on the command line or through stdin. The
output is a ROM image file. You can specify the name of the output file on the command
line or the file can be emitted from stdout. .
The configuration file consists of a series of clauses. Each clause starts with an identifier.
The identifier is followed by configuration data appropriate to the identifier. Data
consists of one of the following:

sintegers, which are specified as decimal or hex [0x] numbers or 'xxxx' 4-char constants
estrings

eraw data blocks, which are specified as hex digits surrounded by angle brackets
soption lists, which are identifier/data pairs surrounded by.braces

Identifiers are case-insensitive.

Comments and white space are allowed anywhere, including between bytes of hex data.
As with C++ code, you precede comments with // or surround them with /* and */.
Rex takes all the input configuration information, processes as necessary, then
concatenates it all and builds the ROM extension header.

Rex Command Line Syntax

Here is the Rex command-line syntax.
rex [-help] [-o output-file] [config-file]

-help print this message

Hardware Design 1-29
Draft. Preliminary, Confidential. ©1996 Apple Computer, inc. 7/25/96

1-30

CHAPTER 1

ROM Board Designer's Guide

-0 output-file set the name of the output file
config-fileset the name of the configuration file

Configuration File Syntax
Here is the current set of clauses Rex accepts in the configuration file.

id integer ROM extension ID (0-3) All Rom Extensions must have Unique Identifiers.
This field is Mandatory. The Apple Rom Extension, will always have ID 0.

start integer Virtual address of the start of the ROM extension. Depending on where the
ROM extension exists

manufacturer integer Manufacturer ID. These ID’s must be unique and are obtained
from Apple Newton Licensing Support.

version integer Version field of header

package string Add a package file
string (OPTIONAL) Patch info file for the package
diagnostics string Add the diagnostics file (this currently just does a raw copy of the file.)

RAMAllocationAdd a RAM allocation block

option list:min integer

max integer

percent integer (0-100)

block integer Specify a tag (usually a 'xxxx'-style integer)
block stringRead data from the file with the specified name
block raw-dataAdd the given raw data

Sample Configuration File

Here is a sample configuration file.
/ *

A test Rex file (this is a comment)

rex -o testout test
*/

// double slashes work as comments too

manufacturer 0x100// Integers can be hex...[Required Field]
version 1// or decimal.

// or 'xyzt' form (see "block” below)

id 2// REx ID [Required Field]

start 0x1000000/ / Virtual Start Address [Required Field]

// Multiple package clauses are allowed.

Hardware Design
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

CHAPTER 1

ROM Board Designer’s Guide

// Each just appends another package.
package "::magicfolder:ntest. mp"

// An optional additional string specifies the patch info file

"o,

package "::magicfolder:killpass.mp" "::magicfolder:killpass.pt"
diagnostics "test”// Only one diagnostics file is allowed per REx.

// RAMAllocations' percent is 0-100 (translated into 0-1023 for you)
RAMAIllocation { min 10 max 50 percent 25 }

RAMAllocation { min 10 max 50 percent 25 }

block 'test' "test”// "block” lets you specify arbitrary

block 'frob' <123456>// blocks as a file or raw data.

block 'frob' <5655121>// Additional ones get appended.

Hardware Design
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

1-31

CHAPTER 1

ROM Board Designer's Guide

1-32 Hardware Design
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 7/25/96

